
Reprinted from Operating Systems Review 43(4):31–34, December 2009. http://doi.acm.org/10.1145/1713254.1713262

PLOS 2009: Fifth Workshop on
Programming Languages and Operating Systems

Workshop Overview
∗

Eric Eide
University of Utah

eeide@cs.utah.edu

Gilles Muller
INRIA REGAL

Gilles.Muller@lip6.fr

Olaf Spinczyk
TU Dortmund

olaf.spinczyk@udo.edu

ABSTRACT
This report summarizes the Fifth Workshop on Programming Lan-
guages and Operating Systems (PLOS 2009), which was held in
conjunction with the SOSP 2009 conference. This report presents
the motivation for holding the workshop and summarizes the work-
shop contributions.

1. INTRODUCTION
The goal of the PLOS workshop series is to bring together re-
searchers and developers from the programming languages (PL)
and the operating systems (OS) domains to discuss recent work at
the intersection of these fields. PLOS is a platform for discussing
visions, challenges, experiences, problems, and solutions arising
from the application of advanced programming and software engi-
neering concepts to operating systems construction, and vice versa.

In 2009, the PLOS workshop was held in conjunction with SOSP.
This edition of the workshop was very successful—probably the
most successful PLOS workshop ever! Thirty-nine participants at-
tended high-quality paper presentations, saw inspiring demonstra-
tions, and participated in a highly interactive workgroup session.

2. MOTIVATION
Historically, OS development and programming language develop-
ment went hand-in-hand. Cross-fertilization was the norm. Chal-
lenges in one area were often approached using ideas or techniques
developed in the other, and advances in one enabled new capabil-
ities in both. Today, although the systems community at large re-
tains an iron grip on C, novel approaches to OS construction based
on new programming language ideas continue to be an active and
important area of research. The systems field continues to provide
a wealth of challenge problems and new results that should spark
advances in programming languages, software designs, and idioms.

The connection between OS development and programming lan-
guages is both significant and current. This is demonstrated by op-
erating systems such as seL4 [5] and Singularity [3], embedded OS
frameworks such as TinyOS [7], OS extension frameworks such as
SafeDrive [11], and the “programming language techniques” ses-
sion at OSDI 2008. The PLOS workshop series is intended to be a
venue for new and emerging research that follows in the footsteps
of these examples—new ideas that further explore the synthesis of
programming language and operating system concepts.

3. PREPARATION
Eric Eide, Andreas Gal, Gilles Muller, and Olaf Spinczyk proposed
to hold the fifth PLOS workshop in conjunction with SOSP 2009.
∗http://www.plosworkshop.org/2009/

The proposal was accepted, and the organizers quickly published
a call for workshop papers. Suggested topics for submissions to
PLOS 2009 were:

• critical evaluations of new programming language ideas in
support of OS construction;

• domain-specific languages for operating systems;
• type-safe languages for operating systems;
• object-oriented and component-based operating systems;
• language-based approaches to crosscutting system concerns,

such as security and run-time performance;
• language support for system verification;
• language support for OS testing and debugging;
• static/dynamic configuration of operating systems;
• static/dynamic specialization within operating systems; and
• the use of OS abstractions and techniques in language run-

times.
Gilles Muller was the PLOS 2009 program chair. The other

members of the program committee were:
• Eric Eide, University of Utah
• Manuel A. Fähndrich, Microsoft Research
• Andreas Gal, Mozilla Corporation
• Robert Grimm, New York University
• Gernot Heiser, University of New South Wales
• Maurice Herlihy, Brown University
• Urs Hölzle, Google
• Bernd Mathiske, Adobe
• Laurent Réveillère, ENSEIRB/LABRI

The program committee received fourteen paper submissions.
Following a rigorous review process, the committee selected seven
for presentation at the workshop.

4. PROGRAM
The PLOS 2009 program is shown in Figure 1. The day began with
an invited keynote address by David Gay, who described the Ivy
research project. Following the keynote, the first workshop session
was devoted to the papers presenting programming-language ap-
proaches to the domains of kernels and distributed systems. The
second session started in the afternoon and addressed the topic of
domain-specific languages (DSLs) for systems programming. In
the third workshop session, several authors demonstrated the sys-
tems described in their papers. This allowed the PLOS participants
to interact widely and ask detailed questions. During the last ses-
sion, the workshop participants organized working groups to dis-
cuss two topics in depth: (1) formal verification and DSLs, and
(2) programming-language annotations.

The paper “Filet-o-Fish: Practical and Dependable Domain-
Specific Languages for OS Development” by Pierre-Evariste Da-
gand, Andrew Baumann, and Timothy Roscoe was chosen as the



• Welcome and Keynote

– Keynote Address: Ivy: Modernizing C
David Gay (Intel Research Berkeley)

• Session 1: Papers about Kernels and Distributed Systems

– Checking Process-Oriented Operating System Behaviour using CSP and Refinement
Frederick R. M. Barnes and Carl G. Ritson (University of Kent)

– A Microkernel API for Fine-Grained Decomposition
Sebastian Reichelt, Jan Stoess, and Frank Bellosa (University of Karlsruhe)

– Code-Partitioning Gossip
Lonnie Princehouse and Ken Birman (Cornell University)

– CatchAndRetry: Extending Exceptions to Handle Distributed System Failures and Recovery
Emre Kıcıman, Benjamin Livshits, and Madanlal Musuvathi (Microsoft Research)

• Session 2: Papers about Domain-Specific Languages

– Filet-o-Fish: Practical and Dependable Domain-Specific Languages for OS Development — (Best Paper)
Pierre-Evariste Dagand (ENS Cachan-Bretagne), Andrew Baumann, and Timothy Roscoe (ETH Zurich)

– KStruct: Preserving Consistency Through C Annotations
Alexander Schmidt, Martin von Löwis, and Andreas Polze (Hasso Plattner Institute at University of Potsdam)

– Distributed Data Flow Language for Multi-Party Protocols
Krzysztof Ostrowski, Ken Birman (Cornell University), and Danny Dolev (Hebrew University)

• Session 3: Demonstrations

• Session 4: Working Groups and Wrap Up

Figure 1: Workshop Program

best paper of PLOS 2009 by the workshop attendees.

4.1 Keynote
David Gay from Intel Research Berkeley summarized his work to-
ward improving the C programming language. His approach is
based on adding annotations to C code—both legacy and new C
programs—to help prevent the occurrence of bugs. Three approaches
and associated annotation systems have been developed as part of
the Ivy research project. The first, embodied in the Deputy com-
piler, seeks to prevent the occurrence of type-safety and memory-
safety errors. The second, implemented in HeapSafe, is for pre-
venting the problems caused by dangling pointers. The third, im-
plemented in the SharC tool, is for the safe sharing of complex data
structures in concurrent programs. These approaches have been
used to improve the safety of the Linux kernel and TinyOS. The Ivy
tools are publicly available at http://ivy.cs.berkeley.edu/.

4.2 Session 1: Kernels & Distributed Systems
Starting the first session, Frederick Barnes from the University of
Kent presented a CSP-based approach to kernel development. In
this approach, a kernel is built from a set of concurrent processes
that communicate through well-defined channels; in addition, these
channels can be reconfigured dynamically. The occam-pi program-
ming language allows systems to be implemented using these ab-
stractions. The advantage of Fred’s approach is that communica-
tions and process composition can be formally verified at compile
time. A example kernel, RMoX, was developed following these
principles and partially verified.

Sebastian Reichelt from the University of Karlsruhe then de-
scribed an approach for developing a microkernel using fine-grained,

isolated components. The motivation for this work is to offer a pro-
gramming model close to traditional monolithic systems, and at the
same time, to support modularity like that found in microkernels.
The main advantage of this solution is to permit the reuse of exist-
ing systems code with little reengineering. As a demonstration of
such reuse, a prototype OS has been built by reusing Linux drivers
and the LwIP networking stack.

In the third talk of the session, Lonnie Princehouse from Cor-
nell University presented a promising approach for simplifying the
development of gossip protocols. The idea is to describe an over-
all protocol as a collection of pairwise node-transaction functions,
written in Java. A pairwise function describes how the states of
two communicating nodes are (atomically) updated by a gossip ex-
change. A code slicer transforms these functions into the imple-
mentations of the gossip initiator and gossip recipient. Proxies and
lower-level networking code are generated automatically.

The last talk of the session was given by Ben Livshits from Mi-
crosoft Research. He described a set of language extensions for
expressing retry-based recovery strategies. When an operation in a
distributed system fails, it is often possible and useful for the sys-
tem to recover by simply retrying the operation. Ben presented a
set of language constructs for describing retry strategies in a con-
cise manner. With these new constructs, a block of code can be
retried several times, possibly with a modified environment each
time. Retries can also be delayed until some additional condition
is satisfied. Using several realistic examples from Facebook, Ben
described uses of his retry mechanisms to cope with failures.

4.3 Session 2: Domain-Specific Languages
The afternoon paper session was devoted to domain-specific lan-
guages and their uses in implementing operating systems.

2



Pierre-Evariste Dagand from ENS Cachan-Bretagne described
Filet-o-Fish, an approach to simplifying the implementation of DSLs.
Filet-o-Fish supports both the specification of the semantics and the
generation of C code in the back end of the compiler. Filet-o-Fish
is a first step toward a verified DSL compiler. It has been developed
in the context of the Barrelfish operating system [1].

Alexander Schmidt then presented KStruct, an annotation-based
language for the consistent monitoring of data structures. The lan-
guage is based on notations already introduced in Microsoft Win-
dows for declaring lock behavior. KStruct annotations are used at
compile time to generate monitoring code. At run time, the moni-
tors access data while masking unwanted intermediate state.

The last talk was given by Krzysztof Ostrowski from Cornell,
who presented a novel object-oriented model for defining the se-
mantics of distributed multi-party protocols. Multi-party protocols—
including ones for leader election, distributed locks, and reliable
multicast—are commonly used in peer-to-peer systems. Krzysztof
introduced the concept of a distributed flow, which captures high-
level protocol semantics concisely. The notion of a distributed flow
can reduce coding burden, support reasoning about the protocol be-
havior, and provide a high degree of architectural flexibility.

4.4 Demonstration Session
Following the paper presentations, the PLOS attendees turned their
attention to demonstrations. Four of the systems described in the
paper presentations were demonstrated during the workshop. Fred
Barnes presented the RMoX operating system running on a lap-
top and on two embedded platforms. At the same time, Sebas-
tian Reichelt demonstrated tools for working with the microker-
nel architecture and components that he had described during his
talk. Pierre-Evariste Dagand demonstrated Filet-o-Fish. Finally,
Krzysztof Ostrowski presented his distributed data flow language.

4.5 Working Group: DSLs and Verification
Following the demonstrations, the workshop participants organized
themselves into two working groups to focus in-depth on topics
that had emerged during the workshop. The first working group
discussed the relationship between domain-specific languages and
the formal verification of operating systems. The paragraphs below
summarize some of the ideas that came from this working group.

Translation validation for dependable DSLs. For Filet-o-Fish
to be truly dependable, it would need to be formalized in a theorem
prover. The Agda functional language [10] is being seriously con-
sidered for this purpose. Using Agda, the functional semantics of
Filet-o-Fish would not consist of Haskell functions, which cannot
be formally reasoned about, but mathematical objects, which could
be formally manipulated. It has been commonly agreed that this
objective could be achieved with relative ease.

After seL4, what’s next? Although the verification of seL4 is
finished [5], the seL4 developers have mentioned some interesting
research issues and directions they are considering. For example,
they are using DSLs to automate repetitive tasks and derive a cor-
rectness proof of the generated code. Moreover, an important issue
remains: determining the trusted computing base (TCB) and en-
suring its correctness. Beyond the TCB, isolating or restricting the
interaction between components executing on top of the kernel is
also a challenging problem.

Measuring operating-system dependability. Although the ver-
ification of systems code is flourishing, the community lacks a set
of metrics to compare these works. The Common Criteria [8] were
meant to solve this problem. They define seven levels of correct-
ness, each consisting of a set of properties. However, in practice,
people tend to implement and verify their systems up to some level,

and then grab the low-hanging fruits in various higher-graded com-
ponents. To compare verified systems, therefore, researchers need
to compare the verified properties of their systems to those in other
systems, including performance, and the various flavors of certain
correctness invariants.

Going down to assembly. Because seL4 correctness is ensured
only down to the level of C code, one must trust the correctness
of the C compiler. The CompCert certified compiler [6] comes to
mind as a way to gain trust below the level of C code. However,
“simply” compiling seL4 with CompCert would be of relatively
small benefit. The ideal situation would be to have a correctness
proof mapping the high-level seL4 invariants down to the assembly
code. This approach is being explored.

Not much is lost by limiting to C, however: “C is the universal
assembly.” In practice, seL4 had a requirement to perform within
10% of the speed of L4, which is met—seL4 is sometimes even
faster than L4. Thus, performance has not been a problem. In term
of effort, the correctness proof from the Haskell model to C was
reported to be significantly easier than that from the Isabelle model
to Haskell.

Integrating domain-specific logics. Bossa [9], a DSL for writ-
ing schedulers, was mentioned during the working group. By using
this DSL, a novice is able to write a scheduler for Linux that, prov-
ably, will not crash. This guarantee, among others, is ensured by
abstractions that are tailored to the problem at hand. This exam-
ple embodies the importance of the logic of DSLs, beyond their
mere syntactic aspect. A DSL is not only useful for decreasing the
amount of code that one must write. A good DSL also captures the
logic of the problem—that is, the semantics and the invariants that
should be maintained.

Dependable DSL parsers. A common issue for a certified com-
piler is that it relies on the correctness of its parser. The seL4 oper-
ating system and Filet-o-Fish are no exceptions. To the knowledge
of the working group, it is an open problem to be able to guarantee
the correctness of a parser. Translation validation comes to mind,
but one might need to worry about the speed of the resulting parser.

4.6 Working Group: Annotations
The second working group discussed the use of source-level anno-
tations to improve systems programming languages. Many emerg-
ing tools rely on programmers to insert annotations into their source
code as a way of attaching properties to parts of their programs.
Typically, a tool defines a unique set of annotations for itself, and
depending on the tool’s purpose, it may require a programmer to in-
sert few or many annotations into a system’s source code. If many
different tools are used at once, then many different types of anno-
tation may need to be inserted into a system’s source code.

In his PLOS workshop keynote, David Gay colorfully referred
to the overuse of annotations as “annotation diarrhea.” The second
PLOS working group sought to explore the use of annotations for
systems programming and seek a cure for this new-found disease.

The first question discussed was, Why are annotations so widely
used in research systems? An important argument was that anno-
tations can compensate for some of the language deficiencies of C.
The annotations supported by Ivy are a good example of this. By
reducing the likelihood of bugs and security vulnerabilities in C
code, it might be possible to keep the language alive longer. (The
group did not discuss if “keeping C alive” is truly a worthy goal.)
Annotations can also ease software development and are very pow-
erful if they extend the language’s type system, e.g., through user-
defined type qualifiers. Another point of view was that annotations
are a vehicle to express the programmer’s intent explicitly in the
source code. This is useful not only as a documentation, but also as

3



an important input to a compiler, aspect weaver, or arbitrary trans-
formation system.

Another question was, Which annotation mechanisms are out
there, and what are their pros and cons? The working group
discussed many different approaches including the standard mech-
anisms in Java and .NET and the established mechanisms in C, e.g.,
pragmas, the OpenMP API [2], and GCC attributes. The group also
catalogued more sophisticated mechanisms such as the metadata
systems of modern dynamic languages like Clojure [4] and Python.

The last question was, How can the community help get rid
of annotation diarrhea? Having many different and incompati-
ble annotation systems is counterproductive. In the long term, a
standard mechanism for the family of C-based languages should be
defined. In addition, the amount of necessary annotation should be
reduced by having tools incorporate reasonable defaults. It was also
proposed to move annotations “out of the file”—instead of putting
annotations in the source code, one could rely on the programming
environment to keep track of annotations and their attachments to
source-level constructs. A modern IDE could certainly handle this.
However, this suggestion was controversial, and the practitioners
insisted that developers would not accept being tied to any particu-
lar IDE.

The discussions of the two working groups converged when the
PLOS attendees noted that an annotation mechanism is a kind of
lightweight and “sneaky” DSL that is embedded into a general-
purpose language.

5. CONCLUSION
With almost forty participants who enjoyed a lively agenda of re-
search presentations, system demonstrations, and working groups,
the Fifth Workshop on Programming Language and Operating Sys-
tems was a great success. The organizers believe that they achieved
their goal, to provide a venue for emerging research at the intersec-
tion of OS development and programming language development.
They hope to see you at a future edition of PLOS!

6. ACKNOWLEDGMENTS
We thank Chris Matthews and Pierre-Evariste Dagand for taking
excellent and detailed notes during the workshop. Their work con-
tributed directly to this report. We also give special thanks to Marc
Fiuczynski and Jeanna Matthews for the many hours that they de-
voted to the organization of the SOSP 2009 workshop program.

7. REFERENCES
[1] A. Baumann et al. The multikernel: A new OS architecture

for scalable multicore systems. In Proceedings of the 22nd
ACM SIGOPS Symposium on Operating Systems Principles
(SOSP), pages 29–44, Big Sky, MT, Oct. 2009.

[2] B. Chapman, G. Jost, and R. van der Pas. Using OpenMP:
Portable Shared Memory Parallel Programming. MIT Press,
2007.

[3] M. Fähndrich et al. Language support for fast and reliable
message-based communication in Singularity OS. In
Proceedings of the 1st ACM SIGOPS/EuroSys European
Conference on Computer Systems, pages 177–190, Leuven,
Belgium, Apr. 2006.

[4] S. Halloway. Programming Clojure. Pragmatic Bookshelf,
May 2009.

[5] G. Klein et al. seL4: Formal verification of an OS kernel. In
Proceedings of the 22nd ACM SIGOPS Symposium on

Operating Systems Principles (SOSP), pages 207–220,
Big Sky, MT, Oct. 2009.

[6] X. Leroy. Formal verification of a realistic compiler.
Communications of the ACM, 52(7):107–115, July 2009.

[7] P. Levis et al. T2: A second generation OS for embedded
sensor networks. Technical Report TKN–05–007,
Telecommunication Networks Group, Technische Universität
Berlin, Nov. 2005.

[8] Members of the CCRA. The Common Criteria portal, 2009.
http://www.commoncriteriaportal.org/thecc.html.

[9] G. Muller, J. L. Lawall, and H. Duchesne. A framework for
simplifying the development of kernel schedulers: Design
and performance evaluation. In HASE 2005 - High
Assurance Systems Engineering Conference, pages 56–65,
Heidelberg, Germany, Oct. 2005.

[10] The Agda Team. The Agda wiki — Adga, 2009.
http://wiki.portal.chalmers.se/agda/agda.php.

[11] F. Zhou et al. SafeDrive: Safe and recoverable extensions
using language-based techniques. In Proceedings of the 7th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI), pages 45–60, Seattle, WA, Nov.
2006.

4


