
Cache-Line Transactions:
Building Blocks for Persistent Kernel Data Structures

Enabled by AspectC++
Marcel Köppen

Osnabrück University
Germany

Marcel.Koeppen@uos.de

Jana Traue
BTU Cottbus
Germany

Jana.Traue@b-tu.de

Christoph Borchert
Osnabrück University

Germany
Christoph.Borchert@uos.de

Jörg Nolte
BTU Cottbus
Germany

Joerg.Nolte@b-tu.de

Olaf Spinczyk
Osnabrück University

Germany
Olaf.Spinczyk@uos.de

Abstract
With the availability of systems that contain large amounts
of byte-addressable non-volatile memory (NVRAM), there
is a growing need for data structures that can be mapped
into a process’s address space and be used without data
(de-)serialization. While NVRAM is able to retain memory
contents during system failure and power loss, data consis-
tency has to be preserved by using transactional operations
for data manipulation.
This paper describes a lightweight and efficient transac-

tionmechanism for small data structures inmemory-mapped
NVRAM. The size per data structure is limited to half a
cache-line, so that the approach cannot serve as a general
purpose mechanism for arbitrary applications, but could be
usedwithin an operating system as a low-level building block
for more complex data structures. By using aspect-oriented
programming with AspectC++, the mechanism can be used
in an almost transparent manner, which helps to avoid many
possible sources for bugs.

CCS Concepts • Software and its engineering→ Con-
sistency; Language features; • Hardware → Non-volatile
memory.

Keywords Non-VolatileMemory, Persistent Data Structures,
Aspect-Oriented Programming

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
PLOS ’19, October 27, 2019, Huntsville, ON, Canada
© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-7017-2/19/10. . . $15.00
https://doi.org/10.1145/3365137.3365396

1 Introduction
In recent years, there has been an increasing number of
research articles on the development of new memory tech-
nologies [18] and the implications of fast non-volatile byte-
addressable main memory on the design and implementation
of operating systems [1].

Meanwhile, NVRAM has become available in commercial
products such as FRAM-based microcontrollers from Texas
Instruments and 3D-XPoint/Optane DC memory in Intel’s
server CPU generation Cascade Lake. It is time to exploit this
almost ideal memory on all layers of the software stack, espe-
cially within the operating system for its own data structures
and its applications. For example, file systems and databases
for NVRAM have been proposed [9, 21]. An alternative in-
terface is to directly map NVRAM into the address space of
applications [27]. A consensus on a programming model for
NVRAM has not yet been found [3].
Since NVRAM modules are typically used behind a fast

volatile cache, the order of write operations and the evic-
tion/write back strategy of the cache are of utmost impor-
tance to avoid inconsistent data. Data only becomes per-
sistent when it reaches the NVRAM module. This calls for
software transactions with explicit cache flush operations
during a commit. It is also important that modifications that
reach the NVRAM before the commit can be rolled back. Fig-
ure 1 shows how this can be achieved with Intel’s Persistent
Memory Development Kit (PMDK) [12], which implements
log-based transactions on data structures in persistent mem-
ory pools. In this example, each public member function of
the class has transactional semantics. This interface has two
problems: First, log-based transactions are a heavy-weight
mechanism that comes at high cost, especially for frequently
used small data structures. Second, the various library calls
and wrapper templates for member variables complicate the
code base and give the programmer various “opportunities”
to introduce bugs. As a remedy to these problems, this paper
makes two contributions:

https://doi.org/10.1145/3365137.3365396

PLOS ’19, October 27, 2019, Huntsville, ON, Canada Marcel Köppen, Jana Traue, Christoph Borchert, Jörg Nolte, and Olaf Spinczyk� �
1 class PMDKBoundedBuffer {
2 static constexpr int S = 29; // buffer SIZE
3 typedef pmem::obj::p<char > pc;
4 pmem::obj:: persistent_ptr <pc[]> buf;
5 pmem::obj::p<uint8_t > in, out;
6 public:
7 PMDKBoundedBuffer () : in(0), out(0) {
8 buf=pmem::obj:: make_persistent <pc[]>(S);}
9
10 ~PMDKBoundedBuffer () {
11 pmem::obj:: delete_persistent <pc[]>(buf ,S);}
12
13 void addByte(char data) {
14 auto pop = pmem::obj:: pool_by_vptr(this);
15 pmem::obj:: transaction :: exec_tx(pop , [&]{
16 if ((in+1) % S == out) { return; }
17 buf[in] = data;
18 in = (in + 1) % S;
19 });
20 }
21
22 char getByte () {
23 char result = 0;
24 auto pop = pmem::obj:: pool_by_vptr(this);
25 pmem::obj:: transaction :: exec_tx(pop , [&]{
26 if (out == in) { return; }
27 result = buf[out];
28 out = (out + 1) % S;
29 });
30 return result;
31 } };� �
Figure 1. Implementation of a persistent bounded buffer
using PMDK member wrappers and transactions.

• A lightweight transaction mechanism for small data
objects, which exploits the memory ordering of stores
to a single cache-line.

• A convenient programming interface based on As-
pectC++, which is a general purpose aspect-oriented
programming language extension for C++ [25].

The remainder of this paper is organized as follows: After
discussing related work in Section 2, Section 3 introduces
our lightweight transaction mechanism for NVRAM. The
programming interface is described in Section 4. Finally, we
quantitatively compare our approach with a PDMK-based
implementation to illustrate its superior performance in Sec-
tion 5. The paper ends with a general discussion of possible
use cases and other conclusions in Section 6.

2 Related Work
Commercial products with non-volatile byte-addressable
memory like Intel’s Optane DIMMs hit the market only re-
cently. In the meantime, research on system integration of
NVRAM had to speculate on the underlying technology and
its properties like latency and durability. One of the central
questions was whether NVRAM should be considered as

� �
1 class [[NVM:: transactional]] alignas (64)
2 BoundedBuffer {
3 static constexpr int S = 29; // buffer SIZE
4 char buf[S];
5 uint8_t in, out;
6 public:
7 BoundedBuffer () : in(0), out(0) {}
8
9 void addByte(char data) {
10 if ((in+1) % S == out) { return; }
11 buf[in] = data;
12 in = (in + 1) % S;
13 }
14
15 char getByte () {
16 if (out == in) { return 0; }
17 char result = buf[out];
18 out = (out + 1) % S;
19 return result;
20 } };� �
Figure 2. Bounded buffer implementation augmented with
cache-line transactions using AspectC++.

slow main memory or as fast storage. These different views
lead to different approaches of how to integrate NVRAM
into systems.

When NVRAM is seen as a fast, byte-addressable storage
device, it can be used with a traditional interface for storage:
file systems. Byte-wise modifications of file contents have
long been possible withmemorymapped files, but file system
metadata was optimized for block-based access. File systems
for NVRAM, like PMFS [10], BPFS [9], and SCMFS [28], fo-
cus on efficient metadata management for byte addressable
storage.

Databases are another interface for storage. In contrast to
file systems, they guarantee consistency not only for meta-
data but also for the data itself. Modern in-memory databases,
like Sofort [21], hold most information in main memory and
storage is only needed for durability. Such an architecture
can benefit enormously when disks are replaced by NVRAM,
as analyzed by Bailey et. al. for a minimalistic in-memory
database: the Echo key-value store [2]

The other approach, i.e. treating NVRAM like DRAM, dis-
cusses the mapping of persistent memory to certain ranges
in applications’ address spaces. Changes to programming
languages and run-time systems have been discussed for
the persistent memory frameworks Mnemosyne [27] and
NV-Heaps [8].

All these approaches for NVRAM integration have in com-
mon that they need to guarantee consistency of persistent in-
formation, at least for metadata. NVRAM brings a challenge
which storage had hardly faced before: ordering. Reads and
writes to traditional storage devices have been completely
controlled by software. A system with NVRAM is likely to
use volatile buffers, such as caches, which may cause the

Cache-Line Transactions PLOS ’19, October 27, 2019, Huntsville, ON, Canada

order of writes at the memory controller to differ from pro-
gram order. Moreover, these buffers lose their information
when the power runs out. The consequences can be harmful
for consistency, e.g. when a log entry is marked as valid
before its creation is complete and the power runs out.

A reactive way to address volatile buffers is to flush their
contents to a persistent memory region when the power
runs out. One implementation of such a Timely Sufficient
Persistence model [20] is Whole-System Persistence [19].
This idea has the benefit of imposing no runtime overhead,
but it relies completely on the correctness of the failure
handling. If the system does not have sufficient capacity to
store all data, information is lost.

An alternative is to pro-actively care about durability and
ordering of data. A system which writes all information to
NVRAM as defined by program order adheres to the model
of Strict Persistency [23]. Its effects can be projected by imag-
ining that caches are completely disabled or set to write-
through. The performance degradation for both modes will
be immense. Inspired by research in the field of parallel pro-
gramming with shared memory, relaxed persistency models
like Buffered Strict Persistency [23], Epoch Persistency [23],
and Speculative Persistency [17] which allow for relaxed or-
dering of writes have been proposed. But so far, none of the
ideas has found its way into processors, so that NVRAM
users will have to rely on memory barriers and cache-line
flushes.

In the field of databases, transactional semantics are typi-
cally established using undo logging, redo logging, or mul-
tiversioning. In the context of NVRAM, undo logs are used
in PMFS [10], Atlas [5], and by Kolli et al. [13]. Because the
costs of preserving consistency with NVRAM will be domi-
nated by cache-line flushes [15, 17, 28], their usage should
be kept at a minimum. Lu et al. [16] proposed an undo log
optimization called Eager Commit to minimize flushes. Redo
logging is employed by Mnemosyne [27]. Because there is
no obvious performance benefit to undo or redo logging, the
persistent programming library REWIND [6] lets its users
select the fitting scheme.

Both undo and redo logging write frequently to the mem-
ory location hosting the log. This does not fit memory tech-
nologies which suffer from wearing effects. One alternative
is to use multiversioning and another option is to use hand
crafted data structures which are optimized for NVRAM.
Since trees are a central data structure for file systems and
key value stores, multiversioning trees [9, 26] as well as spe-
cially crafted tree variants [7, 14, 22, 29] for NVRAM have
been designed.
Automatic application of transactions to annotated Java

code has been described for AspectJ [24]. In contrast to our
contribution, this solution cannot transparently change the
object layout.

3 NVRAM Cache-Line Transactions
The x86 memory-ordering model guarantees that an older
store will not pass a younger store to the same cache-line.
This holds true when the transfer of a cache-line to the
NVDIMM is terminated by power failure during a cache-line
flush or when a cache-line is evicted from the cache. We
use these properties to build a transaction mechanism on a
single cache-line.

Figure 3. Cache-line memory layout

A typical cache-line has a size of 64 bytes (see Figure 3).
We use this memory as a kind of double buffer, i.e. one half
of the memory contains the last consistent version of the
transactional data structure, while the other half contains a
working copy. Furthermore, we reserve one byte of the cache-
line to indicate which part of the double buffer is currently
considered valid.

On the start of a transaction, the working copy is created
from the valid part of the cache-line. During the transaction,
write operations are carried out on this active part. The
commit operation flips the index, so that themodified version
becomes the new consistent version. A compiler memory
barrier guarantees that the flipping is the last write operation
of the transaction. After that, the cache-line is flushed into
NVRAM using a clwb instruction followed by an sfence.

It is important to note that this mechanism is correct and
very efficient. Correctness is achieved by the ordering guar-
antees for stores to the same cache-line. For example, if a
transactional data structure is evicted from the cache during
a transaction, the state becomes persistent, but the indica-
tor shows that the old version is the valid one. In case of
a shutdown or crash in this state, the next transaction will
start by copying the valid version into the other half, which
is effectively a rollback. Efficiency is achieved by avoiding
complex log data structures and recovery after restarts.

The bounded buffer presented in Figure 1 is simple enough
to fit into half a cache-line. Within an imaginary operating
system with persistent server processes, the buffer could be
used as an input queue formessages. In case of an unexpected
power loss, the persistent queue would always remain in a
consistent state.

4 Implementation using AspectC++
With the help of the AspectC++ language, a generic imple-
mentation of cache-line transactions can be applied transpar-
ently to any sufficiently small data structure. As shown in
Figure 2, the user only needs to annotate a data structurewith

PLOS ’19, October 27, 2019, Huntsville, ON, Canada Marcel Köppen, Jana Traue, Christoph Borchert, Jörg Nolte, and Olaf Spinczyk

the attribute [[NVM::transactional]] alignas(64). The
actual functionality of cache-line transactions is implemented
by a separate aspect, which gets applied to the annotated
data structures by the AspectC++ compiler.

4.1 Fitting the Data Layout
Cache-line transactions as outlined in Section 3 exploit a
tailored layout of the data structure. Thus, the generic im-
plementation using AspectC++ shall adapt the layout of
any annotated data structure to fit the cache-line transaction
scheme. In particular, the data structures need to be extended
by a copy of the original data members, aligned at the second
half of one cache-line.
Figure 4 shows the simplified source code. The keyword

aspect in the first line declares a module similar to a C++
class that contains a piece of advice in line 2. It introduces
additional data members into any data structure that is an-
notated with the attribute [[NVM::transactional]]. The
remaining lines of code refer to the introduced members.
First, the type definition in line 3 declares the type Copy

that clones each existing data member of an annotated class.
To this end, AspectC++ provides the keyword JoinPoint
as an interface to its compile-time introspection API. We
use the template metaprogram MemberIterator<> from the
JoinPoint Template Library (JPTL) [4] to generate the type
Copy based on information on the number and types of ex-
isting data members prior to the piece of advice.

The resulting type is introduced as an additional datamem-
ber in line 5, wrapped by the tailored cache-line alignment
in lines 4 and 6. Finally, line 7 introduces the _index byte to
select the valid half of the cache-line.

The aspect in Figure 4 introduces four member functions
into the annotated data structures. These functions include
procedures to commit a cache-line transaction (lines 9–14),
start a new transaction log (line 15), and access the last valid
version (line 17) and the active (line 19) half of a cache-line.

4.2 Transactions at Runtime
Once the layout of the annotated data structures is adapted,
the cache-line transactions can be carried out at runtime. We
assume that a proper object-oriented design is implemented,
so that an object is in a valid state after the execution of a
public method, and that non-const, i.e. potentially modifying,
methods have to be made transactional.
Figure 5 shows the source code of another aspect that

implements the transactional behavior. That aspect con-
tains three pointcut definitions in lines 2–4. Such point-
cuts are expressions that refer to entities of a C/C++ pro-
gram, such as member functions, data members, and an-
notations. For example, the pointcut expression in line 2
refers to all data members of classes annotated with the at-
tribute [[NVM::transactional]], but excludes data mem-
bers named "_index" and all static data members. The ex-
pressions "%" and "..." are wildcard symbols that match

one identifier or a series thereof, respectively. Thus, the point-
cut expression tx_method() in line 3 describes the member
functions commit() and log(), and the pointcut expression
transaction() in line 4 refers to all member functions of
annotated classes except the aforementioned two functions
and those functions declared as const.
Based on these reusable pointcut definitions, the aspect

specifies four pieces of advice. First, the advice in line 6
intercepts any function call to a member function of anno-
tated data structures as specified by the pointcut expression
transaction(). On such a function call, a new cache-line
transaction is started by invoking log() on the target object,
provided by tjp->target(), which is part of the AspectC++
join-point API. The intercepted function call is resumed by
tjp->proceed(). After execution of the member function,
the data structure is considered as consistent, so that the
cache-line transaction is finally committed in line 9.

The remaining three pieces of advice capture any read and
write access to data members of annotated data structures.
In short, the set advice in line 12f redirects any write access
to the active data copy, which remains invalid until the com-
plete transaction is committed. The AspectC++ join-point
API provides the necessary pointers for the access redirec-
tion, that is, tjp->entity() for the accessed data member
and tjp->arg<0>() for the new value to be written.
Likewise, the get advice in line 15f redirects any read

access to the active data copy if the access occurs within a
transaction, specified literally by within(transaction()).
The other way around, if a data member is read not within
a transaction, for example, by a function declared as const,
the advice in line 18f returns the last valid version.
In summary, the aspects in Figure 4 and Figure 5 imple-

ment the cache-line transaction scheme in a generic and
transparent way. In other words, both aspect modules can
be applied automatically to various data structures. The As-
pectC++ programming language enables reuse of the shown
implementation, so that the user only needs to add the one-
line annotation [[NVM::transactional]] to augment any
data structure with cache-line transactions.

5 Evaluation
To evaluate our transaction mechanism, we implemented
a bounded buffer as shown in Figure 2 with a capacity of
29 bytes, so that it fits onto a single cache-line of current
x86 processors when we apply the cache-line transaction
(CLTX) data layout. We compare CLTX to a buffer without
transactions and to a buffer using the transaction mechanism
with undo log provided by the PMDK like shown in Figure 1.

5.1 System setup
All measurements were performed on a Dell PowerEdge R740
system equipped with two Intel Xeon Gold 5218 CPUs run-
ning at 2.3 GHz, 12x 32GB DDR4-DIMMs with 2666MT/s,

Cache-Line Transactions PLOS ’19, October 27, 2019, Huntsville, ON, Canada� �
1 aspect CacheLineTransactionsIntroduction {
2 advice NVM:: transactional () : slice class { // introduce new members into the target class
3 typedef JPTL:: MemberIterator <JoinPoint , MemberCopy >:: EXEC::Copy Copy;
4 unsigned char _padding1 [32 - sizeof(Copy)];
5 Copy _copy; // allocates a copy of each data member of the target class
6 unsigned char _padding2 [32 - sizeof(Copy) - sizeof(unsigned char)];
7 unsigned char _index = 0; // indicates which part is active and which the last version
8 public:
9 void commit () {
10 cltx_barrier (); // use a compiler memory barrier to prevent instruction reordering
11 _index ^= 32; // invert the index bit to swap active data and valid version
12 cltx_flush(this); // explicitly flush the associated cache line
13 cltx_sfence (); // execute an SFENCE instruction to make sure
14 } // the flush is done before proceeding
15 void log() { memcpy(getActive(this), getValid(this), sizeof(Copy));}
16
17 template <class T> T *getValid(T *member) const { return (T*)(((char*) member) + _index);}
18
19 template <class T> T *getActive(T *member) const { return (T*)(((char*) member) + (_index ^ 32));}
20 };};� �

Figure 4. Generic introduction of data members implemented in the AspectC++ programming language.� �
1 aspect CacheLineTransactionsRuntime {
2 pointcut tx_member () = NVM:: transactional () && !"% ...:: _index" && !"static % ...::%";
3 pointcut tx_method () = "void ...:: commit ()" || "void ...:: log (...)";
4 pointcut transaction () = NVM:: transactional () && !tx_method () && !"% ...::%(...) const";
5
6 advice call(transaction ()) && !within(transaction ()) : around () {
7 tjp ->target ()->log(); // start a new transaction log on the target object
8 tjp ->proceed (); // continue the execution of the transactional member function
9 tjp ->target ()->commit (); // commit the transaction log and flush the cache line
10 }
11
12 advice set(tx_member ()) : around () { // capture write access and
13 *tjp ->target ()->getActive(tjp ->entity ()) = *tjp ->arg <0>();} // write to active data
14
15 advice get(tx_member ()) && within(transaction ()) : around () { // capture read access
16 *tjp ->result () = *tjp ->target ()->getActive(tjp ->entity ());} // and read active data
17
18 advice get(tx_member ()) && !within(transaction ()) : around () { // capture read access
19 *tjp ->result () = *tjp ->target ()->getValid(tjp ->entity ());} // and read valid version
20 };� �
Figure 5. Generic advice at runtime for implementing cache-line transactions in the AspectC++ programming language.

and 12x 128GB Optane DCPMM. The NVRAM was config-
ured in App-Direct mode. On one socket the DIMMs were
configured as one interleaved set, on the other socket non-
interleaved.
We used Debian Bullseye with kernel 5.2.9-2 as operat-

ing system, PMDK version 1.6.1 compiled from source code,
and libpmemobj++ version 1.7. As compiler we used GCC
8.3.0 with flags -O3 -DNDEBUG. For the benchmarks, we used
one namespace on the interleaved region and one on a non-
interleaved region, each configured in fsdax mode, formatted
with EXT4, and mounted with -o dax.

5.2 Benchmarks
We examined three scenarios using the bounded buffer:

1. filling the buffer byte-wise with one transaction per
addByte operation,

2. filling the buffer byte-wise and then draining the buffer
byte-wise with one transaction per add/getByte,

3. filling the whole buffer from an array in one transac-
tion and then draining the whole buffer into another
array in one transaction.

The scenarios were implemented using the Google Bench-
mark framework [11] that runs each scenario multiple times

PLOS ’19, October 27, 2019, Huntsville, ON, Canada Marcel Köppen, Jana Traue, Christoph Borchert, Jörg Nolte, and Olaf Spinczyk

Plain CLTX PMDK
0

5

10

15

20

25

M
ea

n
CP

U
tim

e
[µ

s]

DRAM

Plain CLTX PMDK

Interleaved

Plain CLTX PMDK

Non-Interleaved

Figure 6. Scenario 1: Add 29 bytes to the buffer in 29 single
transactions.

Plain CLTX PMDK
0

25

50

75

100

125

150

175

M
ea

n
CP

U
tim

e
[µ

s]

DRAM

Plain CLTX PMDK

Interleaved

Plain CLTX PMDK

Non-Interleaved

Figure 7. Scenario 2: Add 29 bytes to the buffer, then get 29
bytes in 58 transactions total.

to ensure stable measurement results. Each benchmark has
been repeated 100 times for the three buffer implementations
in single-threadedmode on DRAM, interleaved NVRAM, and
non-interleaved NVRAM. The memory pools for all bench-
marks were managed using the PMDK.

5.3 Results
The benchmark results are presented in figures 6, 7, and
8. Compared to the plain bounded buffer, the transactional
implementations add a significant overhead to the operations.
Without transactions, the type of memory has no influence
on the measured CPU time.

In the first scenario, the PMDK implementation performs
slightly better on DRAM than cache-line transactions and
takes about the same time on all memory configurations.
Compared to DRAM, the cache-line transactions perform 4.6

Plain CLTX PMDK
0

5

10

15

20

25

30

M
ea

n
CP

U
tim

e
[µ

s]

DRAM

Plain CLTX PMDK

Interleaved

Plain CLTX PMDK

Non-Interleaved

Figure 8. Scenario 3: Fill the buffer in one transaction, then
drain the buffer in another transaction.

times slower on interleaved NVRAM and 5.2 times slower
on non-interleaved NVRAM.
In the second scenario, the PMDK implementation is 2.6

times slower than cache-line transactions on interleaved
NVRAM and 3.4 times slower on non-interleaved NVRAM.
For cache-line transactions, we observe the same slowdown
as in the first scenario on NVRAM compared to DRAM.
In the third scenario, cache-line transactions outperform

the PMDK by a factor of 7 on interleaved NVRAM and by a
factor of 15.2 on non-interleaved NVRAM.

In the first scenario, the PMDK implementation seems to
benefit from optimizations that we could not clearly identify.
In scenarios 2 and 3 it is notably slower on non-interleaved
NVRAM than on interleaved NVRAM,while cache-line trans-
action are only slightly slowed down. The run-time for cache-
line transactions is linear in the transaction count, but unaf-
fected by the number of writes in one transaction.

6 Conclusion
The lightweight transaction mechanism presented in this
paper might come in handy in special use cases within sys-
tem software where efficiency is most important and data
structure complexity is limited. Depending on the scenario,
our evaluation has proven a superior performance compared
to state-of-the-art transactions as implemented by Intel’s
PMDK. We are working on an extension of the mechanism
that supports data structures spanning multiple cache-lines.
Using this mechanism without the presented generic as-

pect would have been extremely cumbersome and error
prone. We believe that this is an excellent example showing
that a general purpose AOP language such as AspectC++ is
sufficient to provide a convenient and safe API to program-
mers without the need for special purpose language/compiler
extensions.

Cache-Line Transactions PLOS ’19, October 27, 2019, Huntsville, ON, Canada

References
[1] Katelin Bailey, Luis Ceze, Steven D. Gribble, and Henry M. Levy. 2011.

Operating System Implications of Fast, Cheap, Non-volatile Memory.
In Proceedings of the 13th USENIX Conference on Hot Topics in Operating
Systems (HotOS’13). USENIX Association, Berkeley, CA, USA, 2–2.
http://dl.acm.org/citation.cfm?id=1991596.1991599

[2] Katelin A. Bailey, Peter Hornyack, Luis Ceze, Steven D. Gribble, and
Henry M. Levy. 2013. Exploring Storage Class Memory with Key Value
Stores. In Proceedings of the 1stWorkshop on Interactions of NVM/FLASH
with Operating Systems and Workloads (INFLOW ’13). ACM, New York,
NY, USA, Article 4, 8 pages. https://doi.org/10.1145/2527792.2527799

[3] Hans-J. Boehm and Dhruva R. Chakrabarti. 2016. Persistence Program-
ming Models for Non-volatile Memory. SIGPLAN Not. 51, 11 (June
2016), 55–67. https://doi.org/10.1145/3241624.2926704

[4] Christoph Borchert. 2017. Aspect-Oriented Technology for Dependable
Operating Systems. Dissertation. Technische Universität Dortmund.
https://doi.org/10.17877/DE290R-17995

[5] Dhruva R. Chakrabarti, Hans-J. Boehm, and Kumud Bhandari. 2014.
Atlas: Leveraging Locks for Non-volatile Memory Consistency. SIG-
PLAN Not. 49, 10 (Oct. 2014), 433–452. https://doi.org/10.1145/2714064.
2660224

[6] Andreas Chatzistergiou, Marcelo Cintra, and Stratis D. Viglas. 2015.
REWIND: Recovery Write-Ahead System for In-Memory Non-Volatile
Data-Structures. Proc. VLDB Endow. 8, 5 (Jan. 2015), 497–508. https:
//doi.org/10.14778/2735479.2735483

[7] Shimin Chen and Qin Jin. 2015. Persistent B+-trees in Non-volatile
Main Memory. Proc. VLDB Endow. 8, 7 (Feb. 2015), 786–797. https:
//doi.org/10.14778/2752939.2752947

[8] Joel Coburn, Adrian M. Caulfield, Ameen Akel, Laura M. Grupp, Ra-
jesh K. Gupta, Ranjit Jhala, and Steven Swanson. 2011. NV-Heaps:
Making Persistent Objects Fast and Safe with Next-generation, Non-
volatile Memories. SIGPLAN Not. 46, 3 (March 2011), 105–118. https:
//doi.org/10.1145/1961296.1950380

[9] Jeremy Condit, Edmund B. Nightingale, Christopher Frost, Engin Ipek,
Benjamin Lee, Doug Burger, and Derrick Coetzee. 2009. Better I/O
Through Byte-addressable, Persistent Memory. In Proceedings of the
ACM SIGOPS 22Nd Symposium on Operating Systems Principles (SOSP
’09). ACM, New York, NY, USA, 133–146. https://doi.org/10.1145/
1629575.1629589

[10] Subramanya R. Dulloor, Sanjay Kumar, Anil Keshavamurthy, Philip
Lantz, Dheeraj Reddy, Rajesh Sankaran, and Jeff Jackson. 2014. System
Software for Persistent Memory. In Proceedings of the Ninth European
Conference on Computer Systems (EuroSys ’14). ACM, New York, NY,
USA, Article 15, 15 pages. https://doi.org/10.1145/2592798.2592814

[11] Google. 2019. Google Benchmark. https://github.com/google/
benchmark Accessed: 2019-08-09.

[12] Intel. 2019. Persistent Memory Development Kit. https://github.com/
pmem/pmdk Accessed: 2019-08-09.

[13] Aasheesh Kolli, Steven Pelley, Ali Saidi, Peter M. Chen, and Thomas F.
Wenisch. 2016. High-Performance Transactions for Persistent Mem-
ories. In Proceedings of the Twenty-First International Conference on
Architectural Support for Programming Languages and Operating Sys-
tems (ASPLOS ’16). ACM, New York, NY, USA, 399–411. https:
//doi.org/10.1145/2872362.2872381

[14] Se Kwon Lee, K. Hyun Lim, Hyunsub Song, Beomseok Nam, and
Sam H. Noh. 2017. WORT: Write Optimal Radix Tree for Persis-
tent Memory Storage Systems. In 15th USENIX Conference on File
and Storage Technologies (FAST 17). USENIX Association, Santa Clara,
CA, 257–270. https://www.usenix.org/conference/fast17/technical-
sessions/presentation/lee-se-kwon

[15] Shuo Li, Peng Wang, Nong Xiao, Guangyu Sun, and Fang Liu. 2017.
SPMS: Strand based persistent memory system. Design, Automation &
Test in Europe Conference & Exhibition (DATE), 2017 (2017), 622–625.

[16] Y. Lu, J. Shu, L. Sun, and O. Mutlu. 2014. Loose-Ordering Consistency
for persistent memory. In 2014 IEEE 32nd International Conference on
Computer Design (ICCD). 216–223. https://doi.org/10.1109/ICCD.2014.
6974684

[17] Y. Lu, J. Shu, L. Sun, and O. Mutlu. 2017. Improving Performance and
Endurance of Persistent Memory with Loose-Ordering Consistency.
IEEE Transactions on Parallel and Distributed Systems PP, 99 (2017),
1–1. https://doi.org/10.1109/TPDS.2017.2701364

[18] Jagan Singh Meena, Simon Min Sze, Umesh Chand, and Tseung-Yuen
Tseng. 2014. Overview of emerging nonvolatile memory technologies.
Nanoscale Research Letters 9, 1 (25 Sep 2014), 526. https://doi.org/10.
1186/1556-276X-9-526

[19] Dushyanth Narayanan and Orion Hodson. 2012. Whole-system
Persistence. SIGPLAN Not. 47, 4 (March 2012), 401–410. https:
//doi.org/10.1145/2248487.2151018

[20] Faisal Nawab, Dhruva R Chakrabarti, Terence Kelly, and Charles B
Morrey III. 2015. Procrastination Beats Prevention: Timely Sufficient
Persistence for Efficient Crash Resilience.. In Proceedings of the 18th
International Conference on Extending Database Technology. 689–694.

[21] Ismail Oukid, Daniel Booss, Wolfgang Lehner, Peter Bumbulis, and
Thomas Willhalm. 2014. SOFORT: A Hybrid SCM-DRAM Storage
Engine for Fast Data Recovery. In Proceedings of the Tenth International
Workshop on Data Management on New Hardware (DaMoN ’14). ACM,
NewYork, NY, USA, Article 8, 7 pages. https://doi.org/10.1145/2619228.
2619236

[22] Ismail Oukid, Johan Lasperas, Anisoara Nica, Thomas Willhalm, and
Wolfgang Lehner. 2016. FPTree: A Hybrid SCM-DRAM Persistent and
Concurrent B-Tree for Storage Class Memory. In Proceedings of the 2016
International Conference on Management of Data (SIGMOD ’16). ACM,
New York, NY, USA, 371–386. https://doi.org/10.1145/2882903.2915251

[23] Steven Pelley, Peter M. Chen, and Thomas F. Wenisch. 2014. Memory
Persistency. In Proceeding of the 41st Annual International Symposium
on Computer Architecuture (ISCA ’14). IEEE Press, Piscataway, NJ, USA,
265–276. http://dl.acm.org/citation.cfm?id=2665671.2665712

[24] Torvald Riegel, Christof Fetzer, and Pascal Felber. 2006. Snapshot
Isolation for Software Transactional Memory. In First ACM SIGPLAN
Workshop on Languages, compilers and Hardware Support for Transac-
tional Computing.

[25] Olaf Spinczyk and Daniel Lohmann. 2007. The Design and Imple-
mentation of AspectC++. Knowledge-Based Systems, Special Issue on
Techniques to Produce Intelligent Secure Software 20, 7 (Oct. 2007), 636–
651. https://doi.org/10.1016/j.knosys.2007.05.004

[26] Shivaram Venkataraman, Niraj Tolia, Parthasarathy Ranganathan,
and Roy H. Campbell. 2011. Consistent and Durable Data Structures
for Non-volatile Byte-addressable Memory. In Proceedings of the 9th
USENIX Conference on File and Stroage Technologies (FAST’11). USENIX
Association, Berkeley, CA, USA, 5–5. http://dl.acm.org/citation.cfm?
id=1960475.1960480

[27] Haris Volos, Andres Jaan Tack, and Michael M. Swift. 2011.
Mnemosyne: Lightweight Persistent Memory. SIGPLAN Not. 47, 4
(March 2011), 91–104. https://doi.org/10.1145/2248487.1950379

[28] Xiaojian Wu, Sheng Qiu, and A. L. Narasimha Reddy. 2013. SCMFS:
A File System for Storage Class Memory and Its Extensions. Trans.
Storage 9, 3, Article 7 (Aug. 2013), 23 pages. https://doi.org/10.1145/
2501620.2501621

[29] Jun Yang, Qingsong Wei, Cheng Chen, Chundong Wang, Khai Leong
Yong, and Bingsheng He. 2015. NV-Tree: Reducing Consistency Cost
for NVM-based Single Level Systems. In Proceedings of the 13th USENIX
Conference on File and Storage Technologies (FAST’15). USENIX Associ-
ation, Berkeley, CA, USA, 167–181. http://dl.acm.org/citation.cfm?
id=2750482.2750495

http://dl.acm.org/citation.cfm?id=1991596.1991599
https://doi.org/10.1145/2527792.2527799
https://doi.org/10.1145/3241624.2926704
https://doi.org/10.17877/DE290R-17995
https://doi.org/10.1145/2714064.2660224
https://doi.org/10.1145/2714064.2660224
https://doi.org/10.14778/2735479.2735483
https://doi.org/10.14778/2735479.2735483
https://doi.org/10.14778/2752939.2752947
https://doi.org/10.14778/2752939.2752947
https://doi.org/10.1145/1961296.1950380
https://doi.org/10.1145/1961296.1950380
https://doi.org/10.1145/1629575.1629589
https://doi.org/10.1145/1629575.1629589
https://doi.org/10.1145/2592798.2592814
https://github.com/google/benchmark
https://github.com/google/benchmark
https://github.com/pmem/pmdk
https://github.com/pmem/pmdk
https://doi.org/10.1145/2872362.2872381
https://doi.org/10.1145/2872362.2872381
https://www.usenix.org/conference/fast17/technical-sessions/presentation/lee-se-kwon
https://www.usenix.org/conference/fast17/technical-sessions/presentation/lee-se-kwon
https://doi.org/10.1109/ICCD.2014.6974684
https://doi.org/10.1109/ICCD.2014.6974684
https://doi.org/10.1109/TPDS.2017.2701364
https://doi.org/10.1186/1556-276X-9-526
https://doi.org/10.1186/1556-276X-9-526
https://doi.org/10.1145/2248487.2151018
https://doi.org/10.1145/2248487.2151018
https://doi.org/10.1145/2619228.2619236
https://doi.org/10.1145/2619228.2619236
https://doi.org/10.1145/2882903.2915251
http://dl.acm.org/citation.cfm?id=2665671.2665712
https://doi.org/10.1016/j.knosys.2007.05.004
http://dl.acm.org/citation.cfm?id=1960475.1960480
http://dl.acm.org/citation.cfm?id=1960475.1960480
https://doi.org/10.1145/2248487.1950379
https://doi.org/10.1145/2501620.2501621
https://doi.org/10.1145/2501620.2501621
http://dl.acm.org/citation.cfm?id=2750482.2750495
http://dl.acm.org/citation.cfm?id=2750482.2750495

	Abstract
	1 Introduction
	2 Related Work
	3 NVRAM Cache-Line Transactions
	4 Implementation using AspectC++
	4.1 Fitting the Data Layout
	4.2 Transactions at Runtime

	5 Evaluation
	5.1 System setup
	5.2 Benchmarks
	5.3 Results

	6 Conclusion
	References

