
Exploring Rust for Unikernel Development

Stefan Lankes
slankes@eonerc.rwth-aachen.de

Institute for Automation of Complex
Power Systems

RWTH Aachen University
Aachen, Germany

Jens Breitbart
jens.breitbart@de.bosch.com
Bosch Chassis Systems Control,

Robert Bosch GmbH
Abstatt, Germany

Simon Pickartz
pickartz@par-tec.com

ParTec Cluster Competence Center
GmbH

Munich, Germany

Abstract

System-level development has been dominated by program-
ming languages like C / C++ for decades. These languages
are inherently unsafe, error-prone, and a major reason for
vulnerabilities. High-level programming languages with a
secure memory model and strong type system are able to
improve the quality of the system software. In this paper,
we explore the programming language Rust for kernel de-
velopment and present RustyHermit, which is a unikernel
completely written in Rust without any C /C++. We show
that the support for RustyHermit can be transparently inte-
gratable in the Rust toolchain and common Rust applications
are build-able on top of RustyHermit. Previously, we de-
veloped the C-based unikernel HermitCore with a similar
design to RustyHermit and we are able to compare both
kernels. We show that the performance of both kernels is
similar and only ~3.27 % of RustyHermit relies on unsafe
code, that cannot be checked by the compiler in detail.

1 Introduction

Cwas invented by Denies Ritchie in 1972 to reduce the usage
of assembly in the original UNIX kernel to a minimum. Con-
sequently, it was mainly developed for system software and
is still the prevalent programming language for Operating
System (OS) kernels. Today, common operating systems are
written in C to a great extent. This is mainly motivated by
its ability to provide high performance and to allow direct
unchecked memory accesses which are required for a small
fraction of the kernel and are typically thought of as a re-
quirement for high performance programming languages.
However, C is error-prone and is difficult to use in large
scale projects as even senior developers can hardly avoid an

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
PLOS’19, October 27, 2019, Huntsville, ON, Canada
© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-7017-2/19/10. . . $15.00
https://doi.org/10.1145/3365137.3365395

incorrect usage of C. Dangling pointers and missing bound-
ary checks are other typical reasons for issues within kernel
code. As reported by Microsoft Security Response Center [6],
about 70 % of Microsoft’s vulnerabilities are memory safety
issues.

C++ as the follow-up programming language tries to solve
these problems. For instance, the C++ standard being intro-
duced in 2011 provides owning and sharing smart pointers
to avoid the problem of dangling pointers. However, C++
still relies on developers to do the right thing which is in
large projects almost impossible to enforce. In contrast to
C / C++, modern high-level programming languages with a
secure memory model and strong type system are able to
avoid most of these issues.

Overall, this is not a new observation and in principle an
old discussion. As described in [9], the Pilot kernel [41] and
the Lisp machine [15] are early examples of the usage of
a high-level language (Mesa and Lisp, respectively) for OS
development. However, the approach has not yet gained ac-
ceptance and is hardly used. This is because memory safety
of high-level languages commonly relies on garbage collec-
tion introducing runtime overhead that is proscribed in the
area of OSs. Various research projects have improved the
performance of garbage collection. However, it is still not
negligible. To this day, performance is often considered more
important than safety.
Furthermore, operation systems saw a fundamental re-

quirement change over the last years. The basic infrastruc-
ture within OSs were established in the seventies, when the
hardware was expensive and resource sharing was the focus
of OSs. The virtualization of hardware resources has been
established to simplify resource sharing such as sharing a
processor in round-robin manner. However, in the era of
cloud computing, complete machines are virtualized to sup-
port server consolidations. This is typically solved by just
adding another software layer that allows the modern virtu-
alization techniques, but leaves the old software unchanged.
As a result, virtualization adds another layer to an already
highly layered software stack, which includes now the sup-
port for old physical protocols (e. g., floppy disks), irrele-
vant optimizations (e. g., disk elevator algorithms on SSDs)
and backward-compatible interfaces (e. g., POSIX). Anil Mad-
havapeddy et. al. discuss these issues in [25, 26] and present

https://doi.org/10.1145/3365137.3365395

PLOS’19, October 27, 2019, Huntsville, ON, Canada Stefan Lankes, Jens Breitbart, and Simon Pickartz

unikernels, i. e., specialized library OSs, as a solution. Uniker-
nels are built by compiling high-level languages directly into
specialized single-address-space machine images. In doing
so, unused code is removed by static code analysis and sys-
tem calls are replaced by common function calls promising a
faster resource handling. Unikernels are able to run directly
on a hypervisor or bare metal on the hardware. They pro-
vide a smaller footprint compared to traditional OS kernels
and have more prospect to optimize the applications. For
instance, the application and the kernel can be optimized by
means of Link-time Optimization (LTO).

Current Unikernels relinquish backward compatibility, of-
ten rely on uncommon programming interfaces, and barely
support multi-processor systems. In this paper, we present
a rewrite of HermitCore [20] in Rust called RustyHermit
and demonstrate that the performance of the Rust implemen-
tation is on-par with the original C implementation. Rusty-
Hermit is integrated into the standard runtime of Rust, and
its compiler infrastructure. It is almost trivial to port an ex-
isting Rust application to RustyHermit, as it just requires
a configuration change. Furthermore, existing C / C++ and
Fortran applications can be linked with RustyHermit and
generate a bootable image. Finally, we describe our experi-
ence with using Rust for OS development and conclude that
it provides various benefits compared to C. We show that
the safety-critical area of RustyHermit is only ~3.27 % of
the total kernel size.
The rest of this paper is structured as follows: We start

with a discussion of the related work in the area of unikernels
and the usage of high-level programming languages for ker-
nel development. In Section 3, we give a short introduction
to Rust, followed by the Section 4 on kernel development us-
ing Rust. In the Sections 6 and 7 we compare the design and
performance of our kernels. Section 8 concludes the paper.

2 Related work

High-level programming languages provide type-/memory-
safety and convenient abstractions of concurrent program-
ming reducing the susceptibility to errors. However, kernel
developers are often skeptical to use new languages because
they expect them to introduce additional overhead compared
to C [45] and require a redevelopment of kernel components.
Yet, many research projects use high-level programming
languages to benefit from the new features such as a safe
memory handling. New system programming languages,
e. g., D [10], Nim [39], Go [14], and Rust [32], have emerged
in the last decade. For nearly every language there exists an
OS project such as Powernex [40] for D and nimkernel [37]
for Nim. From the scientific point of view one of the most
interesting projects is Biscuit which is written in Go and
analyzed in [9]. Biscuit is able to run bare-metal in contrast
to other Go kernels such as Clive [3]. Go uses a garbage

collection for the implementation of safe memory handling
introducing a certain runtime overhead as discussed before.
In Rust, the compiler is able to determine when mem-

ory must be freed avoiding the need for according run-
time checks. This results in far less runtime overhead com-
pared to other high-level programming languages, but intro-
duces unique memory handling at language level. Levy et
al. [22, 23] show that Rust is attractive for kernel develop-
ment because it promises memory-safety while providing
good performance. In addition, Balasubramanian et al. [2]
show that Rust offers software fault isolation (SFI) with lower
overhead and Narayanan et al. in [36] steps to realize a Rust-
based verified firmware. Currently, Microsoft [7] is also an-
alyzing Rust as a system programming language. Projects
such as Redox [43], Tock [44] or teaching kernels like our
eduOS-rs [12] show that Rust is usable for OS development,
but all these Rust kernels were not written with the goal to
compare with C.

Both HermitCore and RustyHermit belong to the class
of unikernels or library OSs. Typical representatives of these
typesMirageOS [25], IncludeOS [4], rumprun kernels [17] and
OSv [18]. The fundamental drawback of unikernels is the
porting effort that is required to adapt existing applications to
the underlying minimalistic OS. This often requires both ex-
pert work and a considerable amount of time. One objective
of the Unikraft [46] project is to build unikernels targeted at
specific applications, without requiring the time-consuming,
expert work. Unikraft is written in C, uses newlib [42] as
the C library, and LwIP [11] as the network stack. However,
the compatibility to common OSs (e. g., Linux) is currently
still limited. HermiTux [38] has similar objectives and re-
alizes compatibility to Linux by rewriting system calls and
using a modified C library. However, the compatibility of
HermiTux is limited as not all Linux system calls have been
re-implemented.

3 Introduction to Rust

Rust is a new programming language originally designed by
Graydon Hoare as a replacement for C / C++. Its goal is to
provide the same level of performance, but to allow for more
comprehensive safety checks at compile time and by default
enabled runtime checks when the compile time checks are
not sufficient (e. g., array access with indices not known
at compile time). We discuss only the features relevant to
understand this paper, a detailed overview on Rust can be
found in [1].
Rust relies on ownerships to provides safe memory han-

dling without runtime overhead. Each value in Rust has a
variable that is called its owner. There is exactly one owner
and whenever this owner goes out of scope, the value will
be dropped and the memory freed. Ownership can forward
the ownership to another variable invalidating the original
owner, or the owner can borrow the value to another variable.

Exploring Rust for Unikernel Development PLOS’19, October 27, 2019, Huntsville, ON, Canada

The value can be borrowed multiple times if it is borrowed
immutable, i. e., the value cannot be changed via the lender,
or it can only be borrowed once in case a mutable borrow is
required. In general, these rules prevent the dangling pointer
problem and prevent pointer aliasing for mutable access. For
most tasks it is possible to develop code that these rules
are satisfied at compile time, however it is also possible to
use std::cell::RefCell to bypass compile time checks, but
enforce runtime checks.

Similarly, to these checks, Rust also provides compile time
checks to ensure that concurrent or parallel code works well.
Data that is shared between threads must implement the so-
called sync trait or must be wrapped in a mutex that provides
this trait. This rule prevents data races, as long as the syn-
chronization mechanism (e. g., the mutex) is implemented
correctly. Furthermore, the Rust compiler checks the life-
time of values shared by threads and will not compile code
in which a value is not guaranteed to outlive the threads
borrowing a value.
All checks named before can be circumvented by using

the unsafe keyword. Unsafe Rust provides the same level
of control as C and for example, provides raw pointers that
allow direct unchecked memory accesses and even allows
the usage of inline assembly. Code in unsafe regions should
be reviewed more carefully than code that checked by the
compiler and as a result are typically frown upon by the Rust
community.

4 Kernel development with Rust

A discussed before, software developers should avoid un-
safe code, however this is not possible in some areas of the
kernel. For instance, the Advanced Programmable Interrupt
Controller (APIC) of an x86 processor can be programmed
in one of two ways, yet both require the use of unsafe code.
The APIC is mapped at a fix physical address, which is not
freeable and consequently not manageable like a common
memory region. This memory area can directly be accessed
by raw pointer. The other way to program the APIC is via the
Machine Specific Registers (MSR), which requires assembly
as the instructions used to program the MSR are not emitted
by the Rust compiler.

One of themost interesting parts for kernel development is
splitting the runtime into an OS independent library and an
OS dependent library. By implementing Rust’s global mem-
ory allocator, the alloc library [33]—which provides smart
pointers and basic data structures such as linked lists, bi-
nary heap, ring buffer, and maps—are available and usable
in kernel space. To compile these libraries only a target spec-
ification file [34] is required, which specifies for instance
the processor type and pointer width. Consequently, kernel
developers are able to reuse existing, well tested code from
the Rust community, which simplifies the development and
increases the robustness of the kernel.

// Describes the CPU state when an

// interrupt arrived

#[repr(C)]

pub struct ExceptionStackFrame {

pub instruction_pointer: u64 ,

pub code_segment: u64 ,

pub cpu_flags: u64 ,

pub stack_pointer: u64 ,

pub stack_segment: u64 ,

}

extern "x86 -interrupt" fn handler(

stack_frame: &ExceptionStackFrame) {

/* handle interupt */

}

Listing 1. A basic interrupt handler written in Rust.

In contrast to most other high-level programming lan-
guages, Rust provides extensions to support low-level pro-
gramming. A typical example is the support of interrupt
handlers for x86 processors. In contrast to common function
calls, an interrupt handler has also to restore the privilege
level of the interrupted task. Consequently, an interrupt on
x86 processors stores automatically the segment selectors of
the code and stack segment on the stack, which are used by
the interrupt task. In addition, the interrupt handler has to
leave with the instruction iret1, which has also to restore
the privilege level and to clean up the stack.

A basic interrupt handler written is Rust is shown in List-
ing 16. In Rust, the keyword x86-interrupt [35] is used tomark
a function as interrupt handler. The argument stack_frame
allows the access to the data, which is automatically stored
by the hardware. Such marked functions can be directly reg-
istered in the interrupt descriptor table. Consequently, it is
possible to write an interrupt handler without any usage of
unsafe code.
There are various scenarios in kernel development, for

which full control over the function stack layout is necessary.
A typical example is the implementation of a context switch
or the startup code, which initialize for instance the stack.
Typically, this is addressed by building the required code
with an assembler and linking it to the rest of the OS. How-
ever, this breaks the development workflow and the Rust
compiler cannot check these parts. Rust supports so called
naked functions [30], which can be used instead. For such
functions, the compiler will not expect a valid stack pointer
and does not create a function prologue / epilogue.The usage
of naked functions reduces the number of lines of unverifi-
able code.

The major disadvantage of using Rust for kernel develop-
ment is the dependency to currently unstable features such
1Abbreviation for the return from interrupt.

PLOS’19, October 27, 2019, Huntsville, ON, Canada Stefan Lankes, Jens Breitbart, and Simon Pickartz

Module Reasons for unsafe code

Startup code Assembly to use control registers
Scheduler Access to a static task table
Dispatcher Assembly to store the context
Memory management Assembly to manage the MMU

Access to static data
Raw pointer manipulation

Synchronization Access to the protected data
I / O Assembly to use machine specific

registers and I / O access ports
Table 1. Reasons for unsafe code regions.

as naked functions and inline assembly. It is not clear, if and
how these features will be supported by the stable version
of the Rust compiler.

5 Unsafe code in RustyHermit

A main objective of RustyHermit was to use unsafe code
region as little as possible. Table 1 lists different parts of
the kernel and reasons for the usage of unsafe code regions.
The most commons reason for unsafe code is the direct or
the implicit usage of inline assembly. To enable processor
features such as AVX, direct access to the control registers is
required. To program these registers, RustyHermit reuses
the x86 [27] crate. This crate is also used by other projects
and promise a stable interface to the hardware. However,
the methods to program the control registers are marked as
unsafe to signalize the users that inline assembly is used.

A second frequently reason is currently the usage of static
mutable data. For instance, the task table and the synchro-
nization primitive to protect the table is created at startup.
Consequently, the global static reference to it is initialized at
boot time. To avoid such unsafe code regions, the reference
could be protected by a mutex, which provides safe access to
static data. However, the data is only initialized at boot time
and afterwards only a read access is provided. To avoid syn-
chronization overhead, RustyHermituses currently unsafe
code regions to access this data.

6 From a C-based to a Rust-based libOS

As said before, RustyHermit is mostly a rewrite of our 64 bit
kernel HermitCore [20, 21], which provides basic OS func-
tionalities, e. g., memory management and priority-based
round-robin scheduling. The kernel is completely written in
C and supports the Intel 64 Architecture and comes with sup-
port for SSE4, AVX2, and AVX512. Although no more than a
single process is executed at a time, the kernel still provides
a scheduler. Only thus more threads than available cores
can be supported. This is important for features of managed
programming languages, e. g., garbage collection, or perfor-
mance monitoring tools. Currently, the scheduler does not

VM VM

OS Kernel
(+ heap)

libc
(+ user heap)

Rust runtime

Rust App

Rust-based libos
(+ heap)

Rust runtime

Rust App

Figure 1. Comparing to build a Rust application on top of a
common OS or RustyHermit.

support load balancing because explicit thread placement is
favored over automatic strategies. The scheduling overhead
is reduced to a minimum by the employment of a dynamic
timer, i. e., the kernel does not interrupt computation threads
which run exclusively on certain cores and do not use any
timer.
As described in [20], applications can be built by using

a cross toolchain which is based on the GNU Compiler Col-
lection. Therefore, the kernel supports all programming lan-
guages which are supported by gcc. The kernel supports
Symmetric Multiprocessing (SMP), uses newlib [42] as C li-
brary and LwIP [11] as IP stack. RustyHermit has nearly all
features of the C-based kernel, but cannot be used a multik-
ernel. Instead of using LwIP, RustyHermit uses smoltcp [24]
as user-level IP stack.

Nearly all runtimes of high-level programming languages
depend on aC library, which is expected to support POSIX [16]
at least on UNIX-like kernel. For instance, the Go runtime of
GNU Compiler Collection use it to allocate memory, to create
pipes and to get access to the IP stack. By using a C library
on a POSIX-based system, it is simple to port a runtime to a
new OSWe used this approach to support Go on our C-based
library OS. However, by using an interface, which is defined
for the multi-tasking, multi-user OS Unix, the kernel and the
user-space maintain their own heaps. In a library operating
is this gratuitous because there is no separation between
kernel and user-space.

The left side of Fig. 1, shows the used technique to support
the high-level programming language on top of a common
operating system or C-based library operating system. As
shown on the right-hand side of Fig. 1, in RustyHermit we
are able to directly call Rust kernel methods without the
indirection via the C library or the POSIX API. In addition,
there is no need to switch between safe (Rust) and unsafe
code (C). It is also possible to use Rust’s ABI between the
kernel and Rust’s standard runtime. Hereby, the same error

Exploring Rust for Unikernel Development PLOS’19, October 27, 2019, Huntsville, ON, Canada

handling can be system-wide used and a fall back to error
handling by integer number is not required.

The disadvantages of this approach are the required changes
to Rust’s standard library, which are required to support our
kernel. However, the interface between the standard library
and the host OSs is relatively small and should easily to
maintain. The implementation for every OSs is located in
a special directory of Rust’s source tree2 and consist of ~25
files for each operating system. In case of our library OS,
~2500 lines of code (without comments) are required to build
the interface to the kernel.
Cargo [31] is Rust package manager and coordinates the

build process of Rust binaries. The difference to the typ-
ical build process of C / C++ is that the package manager
does not install binaries, headers, static or shared libraries. It
downloads the source code, compiles it with the same com-
piler flags and links it directly to the executable. The Rust
community calls such kind of packages crate. However, for
RustyHermit we still build a classical static library, install it
as system library, and link it to the binaries. This is required
because the library handles all interrupts and the FPU state.
Consequently, the kernel should not use the FPU and the
red zone of x86_64 ABI [29]. This seems to be easy to realize
because a common OS kernel does not rely on any kind of
floating-point operations. However, AVX and SSE is part of
the FPU handling and is today not longer limited to floating-
point operations. Consequently, the Rust compiler use these
instructions to optimize the kernel code. By splitting the
application from the kernel, we are able to use different CPU
features / compiler flags and forbid the usage of AVX / SSE
and a red zone in our kernel.

By the full integration of our kernel into the Rust toolchain,
cargo can be used to define the dependencies for the applica-
tion. In principle, every published crate e. g. at crate.io can
be used for the executable based on our library OS. The only
requirement is that the crate should not directly call the host
OS and bypass the Rust’s standard runtime.

7 Evaluation

All benchmarks were performed on an Intel Xeon Gold 6132
with 14 physical cores, clocked at 2.6 GHz, equipped with
376GiB DDR4 RAM and 19.25MiB L3 cache. Processor fea-
tures like SpeedStep Technology, TurboMode, and Hyper-
threading are deactivated to avoid side effects. We used a
3.10.0 Linux kernel on CentOS 7 installation. All benchmarks
are compiled with optimization level 3. Programs, which are
written in C and run natively on CentOS7, are compiled with
the gcc (Red Hat 4.8.5-36).The C version of HermitCore also
all its programs are compiled with gcc 6.3.0, which belong to
the HermitCore toolchain. Our Rust toolchain is integrated
into Rust’s nightly compiler 1.37.0-dev.

2https://github.com/rust-lang/rust/tree/master/src/libstd/sys

Crate LOC LOUC Share in %

RustyHermit 8,834 255 2.89
bitflags 746 0 0.00
log 686 3 0.44
spin 760 24 3.16
x86_64 4,515 314 6.95
cpuid 4,264 36 0.84
multiboot 159 20 12.58

Total 19,964 652 3.27
Table 2. A comparison of the LOC and the LOUC for Rusty-
Hermit related crates.

All HermitCore benchmarks run within the lightweight
hypervisor uhyve [21], Linux benchmarks run natively on
CentOS 7.

7.1 Lines of Unsafe Code

In case of Rust, the Lines of Unsafe Code (LOUC) are count-
able. Consequently, it can be used as a metric to quantify
code quality. The smaller the amount of unsafe code, the
more the compiler is able to check the code. However, Lines
of Code (LOC) metrics are inherently difficult to interpret
as not every line is identical. Furthermore, they ignore the
developer experiences. However, lines of code serves as an
intuitive metric for measuring the size and the complexity
of software and in our case the size of unsafe code.
Table 2 shows the number of lines of (safe) code without

comments and blank lines and compare it with the number
of unsafe lines. The first line of the table shows the results
of our kernel, while the rest shows the results of crates we
reuse from other projects. These crates are used to simplify
the usage of bitflags, to reuse established and often used log-
ging mechanism and spinlocks. The other crates are forked
from existing projects and are slightly modified to handle
multiboot information [13], to identify the feature set of the
x86 processors, and to handle control registers.

The numbers are counted by the cargo extension cargo-
count [5] and shows that the number of unsafe code is of the
kernel is rather small. The largest number of lines of unsafe
code has the crate x86_64, which has to handle the control
registers.

The kernel related part of HermitCore consists of 20.354
lines of C / assembly code and C headers (without comments).
RustyHermit only consist of 8,504 LOC. This is mostly
achieved by reusing of existing crates.

7.2 OS Micro-Benchmarks

In this section we present benchmarks regarding system call
overhead and scheduling. During out benchmark we call
getpid and sched_yield 10 000 000 times and measure the
number of cycles the call took. getpid is the system call with

https://crate.io
https://github.com/rust-lang/rust/tree/master/src/libstd/sys

PLOS’19, October 27, 2019, Huntsville, ON, Canada Stefan Lankes, Jens Breitbart, and Simon Pickartz

System activity Linux HermitCore Rusty-

Hermit

getpid() 1,962 13 36
sched_yield() 2,428 108 233
Thread creation 9,782 8,785 7,790
page fault handling 6,969 7,718 9,061

Table 3. Comparison of the CPU cycles required for basic
system services by Linux, HermitCore, and RustyHermit
respectively.

smallest runtime and closely represents the overhead of a
system call. The system call sched_yield checks if another
task is ready and switches to them. In our case, the system is
idle and consequently the system call returns directly after
the check of the ready queues. Table 3 summarizes the results
as average number of CPU cycles for Linux, HermitCore
and RustyHermit. The overhead of HermitCore is clearly
smaller because in a library OS the system calls are mapped
to common functions. Furthermore, the difference between
getpid and sched_yield on HermitCore is smaller, which
proves the small overhead of HermitCore’s scheduler. Rusty-
Hermit is slightly slower than HermitCore. The schedule
time on RustyHermit is ~125 cycles slower.

We also measure the time between calling the function to
create a new thread and the first instructions executed within
that thread. This is shown in the column thread creation. The
results show that performance of Rust is comparable and, in
this case, also faster.

All tested operating systems are able to bind memory on
demand. The first access to a page triggers a page fault and
its handler will allocate a page frame andmap into the virtual
address space. To benchmark the overhead of a page fault,
we measure the cycles it takes to write just 1 Byte to an
unmapped page. Huge pages are disable for this benchmark.
In case of a hypervisor, we typically have one page fault on
the host side and one on the guest side. To measure only
the overhead within the guest, the hypervisor initializes the
memory before starting the guest.
Both unikernels use free lists to maintain the virtual and

physical address space. Rust seems to slightly increase the
overhead, yet we consider ~1300 cycles acceptable to avoid
memory issues.

7.3 Data parallelism with Rayon

Rayon [28] is a data-parallelism library for Rust. It is compa-
rable with Threading Building Blocks [8] for C++.

To evaluate the performance of Rayon on top of our Her-
mitCore, we use a parallel version of the matrix multiplica-
tion based on the Strassen algorithm. The implementation is
part of Rayon’s demo suite.

2 3 4 5 6 7 8 9 10 11 12 13 14
0

50

100

150

200

250

300

350

400

Number of Cores

Ti
m
e
in

s

Linux
RustyHermit

2 4 6 8 10 12 14
0

3

6

9

12

Sp
ee
du

p

Linux
RustyHermit

Figure 2. The scalability of the matmul benchmark as part
of Rayon’s demo suite showing the absolute runtime (left
axis; solid) and the speedup (right axis; dashed) for different
core counts respectively.

Figure 2 shows the performance of the matrix multipli-
cation for matrices of dimension of 8192x8192. The perfor-
mance of RustyHermit is similar to that of with the native
Linux version. The runtime difference could be caused by
using a Virtual Machine (VM) and must be investigated fur-
ther.

To create the application for RustyHermit, only one func-
tion for determining the number of existing processors had
to be replaced. Otherwise, all additional crates were used
unmodified. We plan to merge these changes to the crate
num_cpus, which Rayon used to determine the number of
CPUs. Rayon itself does not require any modifications to be
work on RustyHermit.

8 Conclusion

In this paper, we present RustyHermit, which is completely
written in Rust and does not use C / C++. RustyHermit is
published on GitHub [19] and is completely integrated into
Rust’s toolchain. Consequently, common Rust applications,
which do not bypass the Rust runtime and directly use OS
services are able to run on RustyHermit without modifica-
tion.

We compare RustyHermit with the C-based kernel Her-
mitCore and Linux and showed that the performance of
RustyHermit is similar to the other solutions. The major ad-
vantage of Rust is that unsafe code must be marked explicitly
and that only ~3.27 % of RustyHermit are unsafe.

Acknowledgments

This research and development was supported by the Ger-
man FederalMinistry of Education and Research under Grant
01IH16010C (Project ENVELOPE).

Exploring Rust for Unikernel Development PLOS’19, October 27, 2019, Huntsville, ON, Canada

References

[1] S. Klabnik andn C. Nichols. 2018. The Rust Programming Language
(Manga Guide). No Starch Press, San Francisco, CA, USA.

[2] Abhiram Balasubramanian, Marek S. Baranowski, Anton Burtsev, Au-
rojit Panda, Zvonimir Rakamari, and Leonid Ryzhyk. 2017. System
Programming in Rust: Beyond Safety. SIGOPS Oper. Syst. Rev. 51, 1
(Sept. 2017), 94–99. https://doi.org/10.1145/3139645.3139660

[3] Ballesteros, Francisco J. 2015. The Clive Operating System. (March
2015), 1–15. http://lsub.org/ls/clive.html.

[4] A. Bratterud, A. Walla, H. Haugerud, P. E. Engelstad, and K. Begnum.
2015. IncludeOS: A Resource Efficient Unikernel for Cloud Services.
In Proceedings of the 2015 IEEE 7th International Conference on Cloud
Computing Technology and Science (CloudCom).

[5] Cargo-Count. 2019 (accessed August 1, 2019). A cargo subcommand
for counting lines of code in Rust projects. https://github.com/kbknapp/
cargo-count.

[6] Microsoft Security Responce Center. 2019 (accessed Au-
gust 1, 2019). We need a safer systems programming
language. https://msrc-blog.microsoft.com/2019/07/18/
we-need-a-safer-systems-programming-language/.

[7] Microsoft Security Responce Center. 2019 (accessed August 1, 2019).
Why Rust for safe systems programming. https://msrc-blog.microsoft.
com/2019/07/22/why-rust-for-safe-systems-programming/.

[8] Intel Corporation. 2019 (accessed August 1, 2019). Threading Building
Blocks. https://www.threadingbuildingblocks.org.

[9] Cody Cutler, M Frans Kaashoek, and Robert T. Morris. 2018. The bene-
fits and costs of writing a POSIX kernel in a high-level language. In 13th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI). 1–19.

[10] D Language Foundation. 2019 (accessed March 4, 2019). The D Pro-
gramming Language. https://dlang.org/.

[11] A. Dunkels. 2001. Design and Implementation of the LwIP TCP/IP Stack.
Swedish Institute of Computer Science.

[12] eduOS-rs. 2019 (accessed February 13, 2019). A teaching operating
system written in Rust. https://rwth-os.github.io/eduOS-rs/.

[13] Inc. Free Software Foundation. 2019 (accessed August 1, 2019). Multi-
boot Specification version 0.6.96. https://www.gnu.org/software/grub/
manual/multiboot/multiboot.html.

[14] Google. 2019 (accessed March 4, 2019). The Go Programming Language.
https://golang.org.

[15] Richard D Greenblatt, Thomas F Knight, John THolloway, and David A
Moon. 1980. A LISP machine. ACM SIGIR Forum 15, 2 (April 1980),
137–138.

[16] IEEE and The Open Group. 2019 (accessed August 1, 2019). The Sys-
tem Interfaces volume of POSIX.1-2017. http://pubs.opengroup.org/
onlinepubs/9699919799/.

[17] A. Kantee. 2012. Flexible Operating System Internals – The Design and
Implementation of the Anykernel and Rump Kernels. Ph.D. Dissertation.
Department of Computer Science and Engineering, Aalto University,
Aalto, Finland.

[18] Avi Kivity, Dor Laor, Glauber Costa, Pekka Enberg, Nadav Har’El, Don
Marti, and Vlad Zolotarov. 2014. OSv - Optimizing the Operating
System for Virtual Machines. USENIX Annual Technical Conference
(2014).

[19] Stefan Lankes, Jens Breitbart, and Simon Pickartz. 2019 (accessed Oc-
tober 3, 2019). RustyHermit – A Rust-based, lightweight unikernel.
https://github.com/hermitcore/libhermit-rs.

[20] S. Lankes, S. Pickartz, and J. Breitbart. 2016. HermitCore: A Unikernel
for Extreme Scale Computing. In Proc. of the 6th International Workshop
on Runtime and Operating Systems for Supercomputers (ROSS ’16). ACM,
New York, NY, USA, Article 4, 8 pages.

[21] S. Lankes, S. Pickartz, and J. Breitbart. 2017. A Low Noise Unikernel for
Extrem-Scale Systems. In 30th International Conference on Architecture
of Computing Systems (ARCS 2017), Vienna, Austria, April 3–6, 2017.

Springer International Publishing, 73–84. https://doi.org/10.1007/
978-3-319-54999-6_6

[22] Amit Levy, Michael P Andersen, Bradford Campbell, David Culler,
Prabal Dutta, Branden Ghena, Philip Levis, and Pat Pannuto. 2015.
Ownership is theft: experiences building an embedded OS in Rust. ACM,
New York, New York, USA.

[23] Amit Levy, Bradford Campbell, Branden Ghena, Pat Pannuto, Prabal
Dutta, and Philip Levis. 2017. The Case for Writing a Kernel in Rust.
Proceedings of the 8th Asia-Pacific Workshop on Systems (APSys 2017)
(2017), 1–7.

[24] M-Labs. 2019 (accessed August 1, 2019). uhyve - A minimal hypervisor
for RustyHermit. https://github.com/m-labs/smoltcp.

[25] A. Madhavapeddy, R. Mortier, C. Rotsos, D. Scott, B. Singh, T. Gazag-
naire, S: Smith, S. Hand, and J. Crowcroft. 2013. Unikernels: Library
Operating Systems for the Cloud. In Proceedings of the Eighteenth
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS ’13). ACM, New York, NY,
USA, 461–472. https://doi.org/10.1145/2451116.2451167

[26] Anil Madhavapeddy and David J Scott. 2013. Unikernels: Rise of the
Virtual Library Operating System. ACM Queue 11, 11 (Nov. 2013), 30.

[27] B. Martin, C. Boylan, D. Schatzberg, E. Kidd, G. Zellweger, J. Erricson,
N. Edigaryev, P. Oppermann, and R. Lunae. 2019 (accessed September
29, 2019). Rust library to use x86 (amd64) specific functionality and
registers. https://github.com/gz/rust-x86.

[28] Niko Matsakis and Josh Stone. 2019 (accessed Azgust 1, 2019). Rayon —
A data parallelism library for Rust. https://github.com/rayon-rs/rayon.

[29] M. Matz1, J. Hubicka, Andreas Jaeger, and M. Mitchell. 2014 (accessed
August 1, 2019). System V Application Binary Interface – AMD64 Archi-
tecture Processor Supplement. https://www.uclibc.org/docs/psABI-x86_
64.pdf.

[30] Mozilla. 2019 (accessed March 11, 2019). Add support for generating
naked functiosn. https://github.com/nox/rust-rfcs/blob/master/text/
1201-naked-fns.md.

[31] Mozilla. 2019 (accessed March 4, 2019). Cargo – A Rust package man-
ager. https://doc.rust-lang.org/cargo/.

[32] Mozilla. 2019 (accessed March 4, 2019). The Rust Programming Lan-
guage. https://www.rust-lang.org.

[33] Mozilla. 2019 (accessed March 7, 2019). The Rust core allocation and
collections library. https://doc.rust-lang.org/alloc/index.html.

[34] Mozilla. 2019 (accessed March 7, 2019). Target specification files. https:
//github.com/japaric/rust-cross#target-specification-files.

[35] Mozilla. 2019 (accessedMarch 9, 2019). Add support for the x86-interrupt
calling convention. https://github.com/rust-lang/rust/pull/39832.

[36] Vikram Narayanan, Marek S. Baranowski, Leonid Ryzhyk, Zvonimir
Rakamarić, and Anton Burtsev. 2019. RedLeaf: Towards An Operating
System for Safe and Verified Firmware. (2019), 37–44. https://doi.org/
10.1145/3317550.3321449

[37] nimkernel. 2019 (accessed March 4, 2019). An operating system written
in Nim. https://github.com/dom96/nimkernel.

[38] P. Olivier, D. Chiba, S. Lankes, C.Min, and B. Ravindran. 2019. A Binary-
Compatible Unikernel. In 15th ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environments (VEE’19). Accepted for
publication.

[39] D. Picheta. 2019 (accessed March 4, 2019). Nim in action. http://
nim-lang.org/.

[40] PowerNex. 2019 (accessed March 4, 2019). An operating system written
in D. https://github.com/PowerNex/PowerNex.

[41] David D Redell, Yogen K Dalal, Thomas R Horsley, Hugh C Lauer,
William C Lynch, Paul R McJones, Hal G Murray, and Stephen C
Purcell. 1980. Pilot – An Operating System for a Personal Computer.
Commun. ACM 23, 2 (1980), 81–92.

[42] RedHat. 2019 (accessed February 13, 2019). Newlib – A C library for
embedded systems. https://sourceware.org/newlib/.

https://doi.org/10.1145/3139645.3139660
http://lsub.org/ls/clive.html
https://github.com/kbknapp/cargo-count
https://github.com/kbknapp/cargo-count
https://msrc-blog.microsoft.com/2019/07/18/we-need-a-safer-systems-programming-language/
https://msrc-blog.microsoft.com/2019/07/18/we-need-a-safer-systems-programming-language/
https://msrc-blog.microsoft.com/2019/07/22/why-rust-for-safe-systems-programming/
https://msrc-blog.microsoft.com/2019/07/22/why-rust-for-safe-systems-programming/
https://www.threadingbuildingblocks.org
https://dlang.org/
https://rwth-os.github.io/eduOS-rs/
https://www.gnu.org/software/grub/manual/multiboot/multiboot.html
https://www.gnu.org/software/grub/manual/multiboot/multiboot.html
https://golang.org
http://pubs.opengroup.org/onlinepubs/9699919799/
http://pubs.opengroup.org/onlinepubs/9699919799/
https://github.com/hermitcore/libhermit-rs
https://doi.org/10.1007/978-3-319-54999-6_6
https://doi.org/10.1007/978-3-319-54999-6_6
https://github.com/m-labs/smoltcp
https://doi.org/10.1145/2451116.2451167
https://github.com/gz/rust-x86
https://github.com/rayon-rs/rayon
https://www.uclibc.org/docs/psABI-x86_64.pdf
https://www.uclibc.org/docs/psABI-x86_64.pdf
https://github.com/nox/rust-rfcs/blob/master/text/1201-naked-fns.md
https://github.com/nox/rust-rfcs/blob/master/text/1201-naked-fns.md
https://doc.rust-lang.org/cargo/
https://www.rust-lang.org
https://doc.rust-lang.org/alloc/index.html
https://github.com/japaric/rust-cross#target-specification-files
https://github.com/japaric/rust-cross#target-specification-files
https://github.com/rust-lang/rust/pull/39832
https://doi.org/10.1145/3317550.3321449
https://doi.org/10.1145/3317550.3321449
https://github.com/dom96/nimkernel
http://nim-lang.org/
http://nim-lang.org/
https://github.com/PowerNex/PowerNex
https://sourceware.org/newlib/

PLOS’19, October 27, 2019, Huntsville, ON, Canada Stefan Lankes, Jens Breitbart, and Simon Pickartz

[43] Redox. 2019 (accessed February 13, 2019). AUnix-like Operating System
written in Rust. https://www.redox-os.org.

[44] Tock. 2019 (accessed March 4, 2019). A secure embedded operating
system for Cortex-M based microcontrollers. https://www.tockos.org.

[45] L. Torvalds. 2004. . http://harmful.cat-v.org/software/c++/linus.
[46] Unikraft. 2019 (accessed March 4, 2019). An easy way of crafting

Unikernels. http://unikraft.neclab.eu.

https://www.redox-os.org
https://www.tockos.org
http://harmful.cat-v.org/software/c++/linus
http://unikraft.neclab.eu

	Abstract
	1 Introduction
	2 Related work
	3 Introduction to Rust
	4 Kernel development with Rust
	5 Unsafe code in RustyHermit
	6 From a C-based to a Rust-based libOS
	7 Evaluation
	7.1 Lines of Unsafe Code
	7.2 OS Micro-Benchmarks
	7.3 Data parallelism with Rayon

	8 Conclusion
	Acknowledgments
	References

