
Taxonomy of Package Management
in Programming Languages and Operating Systems

Hisham Muhammad
Kong Inc.

hisham@konghq.com

Lucas C. Villa Real
IBM Research

lucasvr@br.ibm.com

Michael Homer
Victoria University of Wellington

Wellington, New Zealand
mwh@ecs.vuw.ac.nz

Abstract
Package management is instrumental for programming lan-
guages and operating systems, and yet it is neglected by
both areas as an implementation detail. For this reason, it
lacks the same kind of conceptual organization: we lack ter-
minology to classify them or to reason about their design
trade-offs. In this paper, we share our experience in both
OS and language-specific package manager development,
categorizing families of package managers and discussing
their design implications beyond particular implementations.
We also identify possibilities in the still largely unexplored
area of package manager interoperability.

Keywords package management, operating systems, mod-
ule systems, filesystem hierarchy

1 Introduction
Package managers are programs that map relations between
files and packages (which correspond to sets of files), and
between packages (dependencies), allowing users to perform
maintenance of their systems in terms of packages rather
than at the level of individual files. Package management is
an area that lies in the border between programming lan-
guages and operating systems: packaging is a step that sits
after a language’s build process, and before an operating sys-
tem’s component installation. For this reason, it seems to be
overlooked by both fields as an implementation issue. Mean-
while, package management keeps growing in complexity.
New languages, new deployment models, and new portabil-
ity requirements all give rise to new package management
systems. Further, this is not simply a matter of competing im-
plementations: modern complex environments often require
several package managers to be used in tandem.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
PLOS ’19, October 27, 2019, Huntsville, ON, Canada
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-7017-2/19/10. . . $15.00
https://doi.org/10.1145/3365137.3365402

For example, when writing JavaScript web applications on
aMac environment, a developermay require using Bower [1],
a package manager for client-side JavaScript components.
Bower is installed using npm [2], a package manager for
node.js [3], a JavaScript environment. On a Mac system,
the typical way to install command-line tools such as npm is
via either Homebrew [4] or MacPorts [5], the two popular
general-purpose package managers for macOS. This is not
a deliberately contrived example: it is the regular way to
install modules for a popular language in a modern platform.
The combinations of package managers change as we

move to a different operating system or use a different lan-
guage. Learning one’s way through a new language or sys-
tem, nowadays, includes learning one or more packaging
environments. As a developer of modules, this includes not
only using package managers but also learning to deploy
code using them, which includes syntaxes for package speci-
fication formats, dependency and versioning rules and de-
ployment conventions. Simply ignoring these environments
and managing modules and dependencies by hand is tempt-
ing, but the complexity of heterogeneous environments and
keeping track of dependency updates can become burden-
some — all these package managers were created to solve
practical problems which the developer would have to oth-
erwise directly handle, after all. Another alternative that
is often proposed, especially by users of operating systems
that feature a system-provided package manager (as is the
case of most Linux distributions), is to avoid using multiple
package managers and use a single general-purpose package
manager. This is, of course, as much of a solution as trying
to make everyone agree on a single programming language
— one of many analogies between package management and
programming languages. The result is that the ecosystem
is not getting any simpler, and at first glance it seems that
package management is indeed a largely unsolved problem.
However, maybe the statement “package management is

an unsolved problem” simply does not make sense, and is
akin to saying that “programming languages are an unsolved
problem”. In the programming languages world we accept
that the multitude of languages is a given. Beyond that, we
understand that there are families of languages with differ-
ent paradigms, with well-known tradeoffs. We also accept
that there is room for domain-specific languages (DSLs) and
for general-purpose languages. Most importantly, we know

https://doi.org/10.1145/3365137.3365402

PLOS ’19, October 27, 2019, Huntsville, ON, Canada Hisham Muhammad, Lucas C. Villa Real, and Michael Homer

how to set boundaries for each language and how to make
DSLs and general-purpose languages interact. Most existing
package management systems, however, are still oblivious
to the fact that they exist as part of a larger ecosystem, with
parts of it handled by other package managers.

In this paper we draw on our own unique combination of
experiences on all sides of this topic: developing a system-
wide packagemanager for a Linux distribution [6, 7], creating
a language-specific package manager [8], and integrating
system and language-specific package managers [7], as well
as being simply developers and end users of other software.
By building a taxonomy for package management and shar-
ing our experiences with package management development
in both the programming language and operating system
spaces, we aim in this paper to frame the design choices,
layers, and trade-offs attendant to package managers for
developers, maintainers, and users.

2 Paradigms of package management:
filesystem-oriented vs. database-oriented

It is a typical didactic device to organize the landscape of
programming languages into paradigms, such as impera-
tive, functional, object-oriented, and so on. The paradigms
a language is categorized into inform users about its de-
sign choices, and with these choices come trade-offs. In the
world of package managers, we can also identify general
paradigms, by looking at their core concepts and trade-offs.
Package managers map between files and packages, and be-
tween packages and dependencies, so users can work with
packages instead of files. The central design choice in a pack-
age manager, therefore, is how to perform those mappings.

There are two approaches on how to map files to packages:
the mapping can be based on the hierarchical directory struc-
ture where the files reside, or can be separate. As this choice
embodies a series of trade-offs and is the single decision that
affects the design and implementation of a package manager
themost, we identify these as two paradigms of packageman-
agement. When the mapping is internal to the file hierarchy
structure, we say that package management is filesystem-
oriented1. When it is external to the hierarchy of files being
managed, the mapping needs to be stored elsewhere. We say
in these cases that management is database-oriented. Most
package managers for Linux distributions, such as RPM and
dpkg/APT, are database-oriented. Filesystem-oriented pack-
age management is more often seen in language-specific
package managers, but as we will see in Section 5.1, it can
also be performed system-wide.
The directory structure used by pip, the package man-

ager for Python modules, is representative of the database-
oriented style. Modules are stored under a path that conforms

1Being database-oriented does not imply an opaque, binary database format.
Various database-oriented package managers store their file manifests in
plain text files

to Python’s default directory for locally-installed modules
(e.g. /usr/lib/python3.7/site-packages/), whose defi-
nition predates the introduction of pip. Database-oriented
designs are often chosen when the package manager needs
to accomodate a pre-existing directory structure. If Python
packages have modules with the same name, clashes may
occur. In a filesystem-oriented design, such as for example
that of RubyGems, this problem would not happen. Each
package has its own subtree under a versioned directory,
and the rubygems.rbmodule, part of the default installation
of Ruby, takes care of finding the appropriate files when
modules are loaded with the require function. Figure 1 lists
more examples of package managers and their classification.

The major trade-off between the filesystem-oriented and
the database-oriented approaches is whether applications
should be aware of the file structure defined by the manager
or whether the manager should adapt to the file structure
defined by applications. This affects how the manager tracks
the mapping of files and how applications are configured to
find their resource files.
In filesystem-oriented managers the mapping of files to

packages is simple. File conflicts are naturally avoided by
storing files of different packages in separate subtrees. Ver-
sioning conflicts between variants of the same package can
also be handled via the tree structure. The structure also
becomes more transparent to users, which can simplify their
experience. The run-time lookup of files by applications,
however, can be complicated, if they are oblivious to the
structure defined by the packagemanager. Applications must
either agree beforehand to this structure (which might be
an option in domain-specific environments), or the package
manager has to do extra work to configure them to use the
structure, such as setting configuration options or environ-
ment variables, or in the worst case, patching them.
Conversely, in database-oriented managers the mapping

of files to packages is more complicated. Applications may
install files wherever they please, and the package man-
ager needs to keep track. This includes handling potential
conflicts if two packages want to use the same pathname.
Database-oriented systems will usually report on these con-
flicts and forbid them. It is up to the integrator (such as a
distribution developer) who is building packages to resolve
the conflict somehow. Also, the package manager needs to
verify that the database and the contents of the filesystem
remain in sync, which is trivial in the filesystem-oriented
approach. The run-time lookup of files on database-oriented
systems, on its turn, is greatly simplified. In most cases it
will be a non-issue, since each file is in the location the
application expected it to be in the first place. However, it
does become an issue when the file has been relocated by
the integrator who built the package, perhaps for solving
conflicts.
Filesystem-oriented managers also present their own set

of challenges, as the description of packages as set of files

Taxonomy of Package Management PLOS ’19, October 27, 2019, Huntsville, ON, Canada

does not present a full picture. Packages, especially in system-
wide installations, often need to perform global changes to
the system, such as adding users and setting environment
variables. Some applications also include database-oriented
portions which are assumed to be updated by installation
scripts, such as refreshing global caches. Non-relocatable
packages often assume hardcoded default paths in which
resource files are expected to be found; if the package man-
ager employs a different organization, it needs to reconfigure
applications to make sure the files are found. One common
solution is to use environment variables, since applications
often support setting custom paths via variables in addition
to the global defaults. Most applications can be installed
in custom locations, with the installation prefix being ad-
justable at compile time. The /opt directory is a traditional
location for filesystem-oriented organization of additional
packages. Core system services are often harder to relocate.
To use the filesystem or a database is a frequent design

dilemma beyond package management, especially on Unix
systems, where “everything is a file” is a long-standing tradi-
tion. Database-oriented solutions often are considered un-
Unix-like (GConf, for instance, raises comparisons to the
Windows Registry [9]). It is remarkable that, in spite of the
Unix philosophy, most Linux package managers are primar-
ily database-oriented.

3 Language-specific vs. language-agnostic
package managers

In the world of programming languages, there is a distinction
between DSLs and general purpose languages. Categorizing
languages in one camp or another is not always easy, but
a working definition is that domain-specific languages are
designed with a specific application domain in mind, and
general purpose languages are the complementary set: lan-
guages made not with a particular domain inmind, but rather
focusing on general areas such as “systems programming”.

While we tend to see DSLs as smaller languages than their
general-purpose counterparts (and in fact early literature
used to term them “little languages” [10]), what defines a
language as being a DSL is the inclusion of features tailored
for a domain. This means that a domain-specific language
may end up including all features normally understood as
those defining a general purpose language.MATLAB [11], for
instance, is a complete programming language, but its wealth
of features for numerical computing it is often regarded as
being domain-specific [12, 13].
In the world of package management, there is also a dis-

tinction between domain-specific and general purpose sys-
tems, but it is better defined. Language-specific managers are
designed to be used in a particular language ecosystem. This
ecosystem usually focuses around a single language (hence
the name “language-specific”), but that is not necessarily
the case: environments such as .NET and the JVM make this

evident, but other languages also grow into families: for ex-
ample, npm supports JavaScript, CoffeeScript, TypeScript
and others. Besides, these VM-based ecosystems usually sup-
port loading native extensions, and therefore they must also
support building and integrating libraries usually written in
C or C++. A language-specific package manager, therefore,
is almost never specific to code written in a single language.
Like domain-specific programming languages which are not
necessarily much smaller than their general-purpose coun-
terparts, the more sophisticated language-specific package
managers are in effect much broader package managers with
specific support for an ecosystem added. They need to build
and deploy executables, native libraries and resource files
written in different languages, keep track of installed files,
check dependencies, perform network operations and man-
age remote repositories. Some of these tasks can be simplified
due to ecosystem-specific assumptions, but many are equiv-
alent in complexity to the tasks of a system-wide package
manager.
This leads us to question why should we have language-

specific managers at all, if they replicate so much of the work
done by general-purpose package managers. Two arguments
in defense of language-specific managers are scalability and
portability. If we compare the number of packages provided
by a typical Linux distribution versus the number of mod-
ules available in mature module repositories from scripting
languages, it becomes clear that the approach of convert-
ing everything into native packages is untenable: for exam-
ple, while the repository for the Debian Linux distribution
features over 59,000 packages in total, the Maven Central
repository for Java alone contains over 290,000 packages,
with the advantage that the repository is portable to various
platforms, some of which lack a built-in universal package
manager (Microsoft Windows being a notable case). Still, this
kind of effort duplication does happen: the Debian repository
contains 1,196 Ruby packages; this is a far cry from the over
150,000 modules in the RubyGems repository.

Figure 2 contrasts language-specific and language-agnostic
packagemanagers, through a few examples. Language-specific
package managers tend to be highly portable, even if the
modules in their repositories are not. For example, while
most packages for NuGet areWindows-specific, the manager
itself has been ported to Unix systems via Mono; packages
that do not depend on Windows APIs can be shared by var-
ious platforms. Language-agnostic managers are generally
system-specific, and may present some degree of portability
to other similar OSes. Note that the extent of portability of all
language-agnostic managers in Figure 2 is limited to specific
Unix variants. Those managers support packaging programs
written in any language and for that reason do not expect
particular file formats or subdirectory layouts. Language-
specific managers make more assumptions in that regard,
and also support customizing the installation directory pre-
fix, which is a necessity for running as a non-privileged user.

PLOS ’19, October 27, 2019, Huntsville, ON, Canada Hisham Muhammad, Lucas C. Villa Real, and Michael Homer

Filesystem-oriented Database-oriented

Language-agnostic
Homebrew (macOS), GNU Stow, Nix,
Encap, PBI 8 (PC-BSD), GoboLinux

RPM (RedHat/Fedora/etc.), dpkg/apt (Debian/Ubuntu/etc.)
PBI 9 (PC-BSD), Pacman (ArchLinux)

Language-specific
npm (server-side JavaScript), Bower (client-side JavaScript)

RubyGems (Ruby), Cargo (Rust), LuaRocks 1.x (Lua)
Cabal (Haskell), pip (Python), LuaRocks 2.x (Lua)

Figure 1. A package manager taxonomy, with representative examples

Language-specific managers
Package managers npm RubyGems NuGet LuaRocks

Portability OS-independent (all Unix, Windows)
Installs code written in JS family, C/C++ Ruby, C/C++, JVM family any .NET, C++ Lua family, C/C++

Files managed JS scripts, JS modules Ruby scripts, Ruby modules .NET and native packages Lua scripts, Lua modules
Supports per-user install yes

Language-agnostic managers
Package managers Nix Homebrew RPM GoboLinux

Portability Linux/macOS macOS/Linux Linux/AIX Linux/Cygwin/OSX
Installs code written in any language

Files managed all kinds
Supports per-user install yes no* no yes
* different installation prefixes are supported but /usr/local is strongly recommended.

Figure 2. Contrasting language-specific and language-agnostic package managers

Some system-wide managers, like Nix and GoboLinux sup-
port per-user installations, but that often requires patching
packages for removing hardcoded pathnames. Homebrew
supports this feature as a tool, but their packages are not
adapted for that, so per-user installations are discouraged.

4 Integration between languages vs.
integration between package managers

Programming languages, both general-purpose and domain-
specific, frequently have points of integration between each
other, in the form of foreign function interfaces (FFIs). Code
written in one language can frequently call into code written
in another language, sometimes with some adapter code in
between. Domain-specific languages are in fact frequently
embedded in general-purpose languages and in programs.
Programming languages can also integrate between each
other through common calling and linking conventions.
The same is not true of general-purpose and domain-

specific package managers. Integration between two package
managers is almost unheard of, evenwhen theymay be found
on the same system. Instead, a subset of packages distributed
through a domain-specific package manager are repackaged
in the format of the general-purpose system. These pack-
ages are fully integrated with the broader system and fully
detached from the domain-specific manager. Packages that
were not repackaged are still available by using the domain-
specific system, but others are available twice, potentially in

different versions and with different configurations. Debian
experimented with a rubygems-integration package that
provided a limited connection between APT and RubyGems,
allowing Debian packages of individual RubyGems to satisfy
dependencies in the gem tool, but encountered nontrivial
complications in doing so [14, 15]. Debian has not yet pur-
sued even this level of integration for other widely-used
domain-specific package managers, and the integration it
has for RubyGems is ad-hoc and highly specialized. In Sec-
tion 5.3 we discuss our attempt at deeper integration in
GoboLinux, but we are aware of no other such integrations
beyond what Debian performs.
A weaker form of one-way integration between package

managers occurs when the system-wide manager uses the
language-specific package manager merely as a build sys-
tem. An example is the use of LuaRocks by Buildroot [16].
Buildroot is a system for compiling full-system images for
embedded environments, which has its own package specifi-
cation format. It uses LuaRocks as a build tool: the Buildroot
specification scripts launch LuaRocks to generate Lua mod-
ules and then collect and integrate them to the system.

5 Experiences with package management
In the following section, we share some of our experiences,
each case study dealing with one the three aspects of package
management design outlined above.

Taxonomy of Package Management PLOS ’19, October 27, 2019, Huntsville, ON, Canada

5.1 GoboLinux
GoboLinux [6] is a Linux distribution based on the concept
of installing each package in a separate installation prefix.
Introduced in 2002, it was the first Linux distribution to be
entirely based on a filesystem-oriented approach to pack-
age management2. Each program is installed under its own
versioned directory, such as /Programs/Bash/4.3.28 and
/Programs/GTK+/3.16.0. This direct mapping of the pack-
age structure to the directory layout allows one to inspect
the system using standard Unix commands. For example, to
get a list of installed packages, one only needs to issue ls
/Programs.

As well as the individual program trees, a tree of symbolic
links called /System/Index collects references to the files
from every program in the system. A single directory con-
tains symlinks matching the structure of the “lib” directory
of every program, paralleling the contents of /usr/lib in a
conventional layout. Figure 3 illustrates this structure. In this
way only a single entry in PATH is needed to find every exe-
cutable and libraries can be loaded using the ordinary linker
mechanisms without further configuration. An additional
layer of fixed symlinks provides backwards compatibility
with the conventional Filesystem Hierarchy Standard[17].

In its original design, packages compiled for GoboLinux
targeted their versioned directory during compilation. That
made them aware of themodified filesystem structure, and of-
ten required configuration contortions and also workarounds
to handle the management of files that were designed to be
shared between packages. In a later revision, GoboLinux
switched to compilation targeting /usr and installation to
the per-program location. Through this structure, even though
packages are organized in self-contained directories under
/Programs, applications find their files through the tradi-
tional Unix hierarchy, as /usr is a symbolic link to /System/Index.

5.2 LuaRocks
LuaRocks [8] is a package manager for the Lua ecosystem. It
was developed building on our previous experience writing
package management tools for GoboLinux and adapting it
to the realities of a language-specific manager.
The design changes that LuaRocks underwent were due

to lessons learned on the specificities of language-specific
package management. The original design of LuaRocks was
filesystem-oriented, like GoboLinux. LuaRocks included then
a custom wrapper for Lua’s require() function, much like
RubyGems. However, many Lua users perceived the wrapper
as tampering with a standard library function, and disliked

2While GoboLinux remained a research distribution with a niche com-
munity, its design proved influential, as its filesystem-oriented ap-
proach was used as a basis for the design of Homebrew, the most
popular package manager in macOS today, as noted in its origi-
nal documentation: https://github.com/Homebrew/legacy-homebrew/tree/
89283db693e9380ccc2e4abc4fa0ad14b4790202

/System/

 /Index/

 /sbin -> bin

 /bin/

 /include/

 /lib/

 audit -> /Programs/Glibc/2.18/lib/audit

 awk -> /Programs/Awk/4.1.0/lib/awk

 cairo -> /Programs/Cairo/1.12.16/lib/cairo

 /cmake/

 Evas -> /Programs/EFL/1.11.0/lib/cmake/Evas

 qjson-> /Programs/QJSON/0.8.1/lib/cmake/qjson

 ...

 ...

(a) The filesystem is indexed with the use of
directories and symbolic links.

/Programs/

 /ALSA-Lib/

 /ALSA-Utils/

 /BeeCrypt/

 /4.1.2/

 /4.2.1/

 /include/

 /lib/

 /Resources/

 Architecture

 Dependencies

 Description

 FileHash

 MetaData

 UseFlags

 Current -> 4.2.1

 /Settings/

 beecrypt.conf

 ...

(b) Versioned directory tree.

Figure 3. GoboLinux file system hierarchy

having to perform an initial setup in their scripts for us-
ing modules installed via LuaRocks 3. For LuaRocks 2.0, the
designwas changed to be database-oriented, so that Luamod-
ules could be installed into a typical Unix-like layout that
matched the default configuration of the Lua interpreter’s
package loader. With all packages installed under a single
directory, a database had to be put in place matching files
to packages. Supporting multiple versions of the same pack-
age installed at the same time is still possible, but requires
the now-optional custom package loader, which produces
versioned filenames when the dependency graph requires
an old version of a module. This language-specific runtime
adjustment allows avoiding the issue with filename conflicts,
so common with database-oriented designs — a luxury that
operating system package managers cannot afford so easily.
Having a high-level declarative specification allowed us

to make such radical changes to the installation layout easily.
Since LuaRocks produces relocatable packages, it does not
provide to specification files (rockspecs) any knowledge of the
final directory structure. This allowed all existing rockspecs
to be used in the new directory layout without any changes.

3Since Ruby 1.9, the interpreter preloads the rubygems module automat-
ically; in prior versions uses had to add require ’rubygems’ explicitly.
This was never an option for Lua due to the language’s minimalistic design,
rendering LuaRocks as a strictly optional component.

https://github.com/Homebrew/legacy-homebrew/tree/89283db693e9380ccc2e4abc4fa0ad14b4790202
https://github.com/Homebrew/legacy-homebrew/tree/89283db693e9380ccc2e4abc4fa0ad14b4790202

PLOS ’19, October 27, 2019, Huntsville, ON, Canada Hisham Muhammad, Lucas C. Villa Real, and Michael Homer

This level of information hiding was only possible because
we were dealing with a language-specific manager, where
we knew what was in the files (Lua source code and binary
dynamic libraries) and how theywould be used (as command-
line scripts or loaded by Lua through its package loader
system).

5.3 GoboLinux Aliens
In GoboLinux we researched the idea of building a foreign
function interface (FFI) of sorts into our general-purpose
package manager, which we called Aliens[7]. Aliens pro-
vides an API to write shims that connect the general-purpose
system package manager with domain-specific package man-
agers.
With Aliens, packages in the general-purpose manager

may express a dependency on a package provided by a sup-
ported domain-specific manager: for example, a package that
requires the Perl XML::Parsermodule, available fromCPAN,
can express a dependency “CPAN:XML::Parser >= 2.34”.
The Aliens system directs such a dependency to a translat-
ing shim, which uses the CPAN tool to confirm whether it
is satisfied, to install the package (and its dependencies) if
required, and to upgrade it, communicating any necessary
information back to the general-purpose manager. The shim
can then make symbolic links for any binaries or native
libraries that have been installed. Any package in one of
the supported domain-specific managers is automatically
available in this way, without creating wrapper packages.
The domain-specific managers themselves are not modi-

fied in this process. Each system is given complete control
of a directory tree, and the relevant languages configured
to search in that tree. This protects against changes in the
functioning of the third-party systems, and allows users to
access them directly as well. A drawback, however, is that
the domain-specific managers do not have reciprocal access
to the wider system: installing a RubyGem that depends
on a native library will not innately result in the native
dependency being satisfied. The cross-platform nature of
these systems makes even specifying such information in
a machine-readable way difficult, although some, notably
LuaRocks, make the attempt.

Not all domain-specific packagemanagers lend themselves
to this integration. Some are resistant to placing their files
within a restricted directory tree, preferring to install into
the global filesystem hierarchy where they may interfere
with each other and the system, while others do not mecha-
nize well. This limited coverage is an additional drawback
of the Aliens approach, but one that is limited to failing to
solve an existing problem, rather than creating a new one. As
with programming languages, a consensus implementation
platform would inevitably be simpler, but social and techni-
cal factors make it impractical. FFIs, and Aliens, attempt to
bridge the gap, with reasonable success.

6 Conclusion
Package management is an area that is notably neglected
in academic studies, but is one of practical impact in the
design of modern operating systems and module systems
for programming languages. In the realm of programming
languages, we have useful ways to categorize languages.
Package management even lacks common terminology, and
each new system faces the same design issues time and again,
even as we move to containers and orchestration systems
[18].
As we categorize package management systems, we con-

clude that filesystem-oriented designs are preferable as they
tend to be less susceptible to conflicts, but they require some
level of intervention to enable files to be found at run time.
We observe that this control exists when language-specific
package managers are bundled with the language environ-
ment, as is the case with npm for node.js and RubyGems
for Ruby. These managers were free to adopt filesystem-
oriented designs since they adjusted their module loaders
accordingly. The other way to exert this control over run-
time lookup is to employ a system-wide lower-level solution
as we did in GoboLinuxwith the /System/Index tree of sym-
bolic links or in the stowfs filesystem virtualization proposed
for GNU Hurd [19]. Database-oriented designs, on the other
hand, are more generally applicable, but are more opaque
to their users and are more prone to package conflict and
file-to-package synchronization issues. For these reasons,
we advocate filesystem-oriented systems in general, but we
also recognize that there are situations where a database-
oriented solution works best to preserve compatibility with
the ecosystem at play, as was the case with LuaRocks.
Our classification of package managers as language-ag-

nostic and language-specific highlighted the complementary
qualities of these two classes of managers. The existence of
language-specific package managers distributes integration
efforts, as upstreammodule developers are often the package
integrators themselves. This allows scaling repositories way
beyond what is possible through the work of OS distribution
maintainers, but also generates some tension between the
language and distribution communities as perceived dupli-
cate work and incompatibilites happen. Through our experi-
ence in both ends of the spectrum of package management
— from low-level distribution management in GoboLinux to
high-level language modules in LuaRocks — we observed a
necessity for these different levels of system organization
to recognize each other and aim for cooperation. Package
managers do not exist on their own, but are part of an ecosys-
tem in which other package managers often take part. We
shared our experience in progressing on this direction with
the GoboLinux Aliens project, and we plan to further pursue
FFI-style package management interoperability.

Taxonomy of Package Management PLOS ’19, October 27, 2019, Huntsville, ON, Canada

REFERENCES
[1] Bower - a package manager for the web. http://bower.io, accessed

August 9, 2019 2019. URL http://bower.io.
[2] npm - Node Package Manager. http://npmjs.com, accessed August 9,

2019 2019. URL http://bower.io.
[3] node.js. https://nodejs.org/, accessed August 9, 2019 2019.
[4] Homebrew - the missing package manager for macOS (or Linux).

http://brew.sh, accessed August 9, 2019 2019.
[5] The MacPorts project. http://www.macports.org, accessed August 9,

2019 2019.
[6] Muhammad H, Detsch A. An alternative for the Unix directory struc-

ture. III Workshop Software Livre, Porto Alegre, Brazil, 2002.
[7] Homer M, Muhammad H, Karlsson J. An updated directory structure

for Unix. linux.conf.au 2010, Wellington, New Zealand, 2010.
[8] Muhammad H, Mascarenhas F, Ierusalimschy R. LuaRocks - a declara-

tive and extensible package management system for Lua. Lecture Notes
in Computer Science 2013; 8129:16–30, doi:10.1007/978-3-642-40922-6_
2.

[9] Wallen J. GConf makes Linux administration
a little more like Windows. TechRepublic Feb
2003. URL http://www.techrepublic.com/article/
gconf-makes-linux-administration-a-little-more-like-windows/,
http://is.gd/V5fBLB, accessed August 9, 2019.

[10] Bentley J. Programming pearls: Little languages. Commun. ACM Aug
1986; 29(8):711–721, doi:10.1145/6424.315691. URL http://doi.acm.org/
10.1145/6424.315691.

[11] MATLAB. https://www.mathworks.com/products/matlab.html, ac-
cessed August 09, 2019 2019. URL https://www.mathworks.com/
products/matlab.html.

[12] Gill A. Domain-specific languages and code synthesis using haskell.
Queue Apr 2014; 12(4):30:30–30:43, doi:10.1145/2611429.2617811. URL
http://doi.acm.org/10.1145/2611429.2617811.

[13] Fowler M. Language workbenches: The killer-app for domain
specific languages? jun 2005. URL http://martinfowler.com/
articles/languageWorkbench.html, http://martinfowler.com/articles/
languageWorkbench.html, accessed August 9, 2019.

[14] Nussbaum L. Re: Ruby packaging in Wheezy: gem2deb, new policy,
etc. debian-ruby mailing list post, 18 January 2011. Available from
https://lists.debian.org/debian-ruby/2011/01/msg00050.html, accessed
August 9, 2019 2011. Mailing list post.

[15] Debian Ruby Team. Teams/Ruby/Packaging - Debian wiki. https://wiki.
debian.org/Teams/Ruby/Packaging, accessed August 9, 2019.

[16] Buildroot. http://www.buildroot.org, accessed August 9, 2019 Apr 2019.
URL http://www.buildroot.org/.

[17] Russel R, Quinlan D, Yeoh C ((eds.)). Filesystem Hierarchy Standard.
2004. Available from http://www.pathname.com/fhs/pub/fhs-2.3.pdf,
accessed August 9, 2019.

[18] Helm - the package manager for Kubernetes. http://helm.sh, accessed
August 09, 2019 2019. URL http://helm.sh.

[19] Stow 2.2.0. http://www.gnu.org/software/stow/manual/stow.pdf, ac-
cessed August 9, 2019 2012.

http://bower.io
http://bower.io
http://npmjs.com
http://bower.io
https://nodejs.org/
http://brew.sh
http://www.macports.org
http://www.techrepublic.com/article/gconf-makes-linux-administration-a-little-more-like-windows/
http://www.techrepublic.com/article/gconf-makes-linux-administration-a-little-more-like-windows/
http://is.gd/V5fBLB
http://doi.acm.org/10.1145/6424.315691
http://doi.acm.org/10.1145/6424.315691
https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/matlab.html
http://doi.acm.org/10.1145/2611429.2617811
http://martinfowler.com/articles/languageWorkbench.html
http://martinfowler.com/articles/languageWorkbench.html
http://martinfowler.com/articles/languageWorkbench.html
http://martinfowler.com/articles/languageWorkbench.html
https://lists.debian.org/debian-ruby/2011/01/msg00050.html
https://wiki.debian.org/Teams/Ruby/Packaging
https://wiki.debian.org/Teams/Ruby/Packaging
http://www.buildroot.org
http://www.buildroot.org/
http://www.pathname.com/fhs/pub/fhs-2.3.pdf
http://helm.sh
http://helm.sh
http://www.gnu.org/software/stow/manual/stow.pdf

	Abstract
	1 Introduction
	2 Paradigms of package management: filesystem-oriented vs. database-oriented
	3 Language-specific vs. language-agnostic package managers
	4 Integration between languages vs. integration between package managers
	5 Experiences with package management
	5.1 GoboLinux
	5.2 LuaRocks
	5.3 GoboLinux Aliens

	6 Conclusion
	REFERENCES

